怎么把设出的特解 y*带入(1)??ab分别是怎么求的?考研数三,高数,
3个回答
展开全部
特解 y = (ax^2+bx)e^(2x)
y' = (2ax+b)e^(2x) + 2(ax^2+bx)e^(2x)
= [2ax^2+2(a+b)x+b]e^2x
y'' = [4ax+2(a+b)]e^2x + 2[2ax^2+2(a+b)x+b]e^2x
= [4ax^2+4(2a+b)x+2a+4b]e^2x
代入微分方程悔姿键得碧巧
[4ax^2+4(2a+b)x+2a+4b] - 5 [2ax^2+2(a+b)x+b] + 6 (ax^2+bx) = x
则 -2a = 1,2a - b = 0,解得 a = -1/册歼2, b = -1
y' = (2ax+b)e^(2x) + 2(ax^2+bx)e^(2x)
= [2ax^2+2(a+b)x+b]e^2x
y'' = [4ax+2(a+b)]e^2x + 2[2ax^2+2(a+b)x+b]e^2x
= [4ax^2+4(2a+b)x+2a+4b]e^2x
代入微分方程悔姿键得碧巧
[4ax^2+4(2a+b)x+2a+4b] - 5 [2ax^2+2(a+b)x+b] + 6 (ax^2+bx) = x
则 -2a = 1,2a - b = 0,解得 a = -1/册歼2, b = -1
追问
谢谢你。太感谢了!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询