圆o是三角形ABC的内切圆,D,E,F是切点,点D,E,F分别在AB,BC,CA上,问:三角形DEF的形状.

酷帅王
2012-10-31 · TA获得超过4656个赞
知道小有建树答主
回答量:270
采纳率:0%
帮助的人:250万
展开全部
为锐角三角形,
△DEF的三个内角∠AFD=∠DEF,∠BDE=∠DFE,∠CEF=∠EDF.(这是一个性质下面附图)
而∠AFD,∠BDE,∠CEF分别是等腰△ADF,等腰△BDE,等腰△CEF的底角,
∴ 2∠AFD,2∠BDE,2∠CEF都小于180°
∴∠AFD,∠BDE,∠CEF都小于90°
∴∠DEF,∠DFE,∠EDF也都小于90°,
则△DEF是锐角三角形。
∠CBF=∠BAC是因为∠CBE+∠CBF=90°
CD为直径,则∠DAB+∠BAC=90°
而BO=CO,则∠CBE=∠BCO
又∵∠BCO与∠DAB是同弧所对的圆周角
即∠DAB=∠BCO=∠CBE
∴∠CBF与∠BAC与等角互余则相等
匿名用户
2012-11-20
展开全部
为锐角三角形,
△DEF的三个内角∠AFD=∠DEF,∠BDE=∠DFE,∠CEF=∠EDF.(这是一个性质下面附图)
而∠AFD,∠BDE,∠CEF分别是等腰△ADF,等腰△BDE,等腰△CEF的底角,
∴ 2∠AFD,2∠BDE,2∠CEF都小于180°
∴∠AFD,∠BDE,∠CEF都小于90°
∴∠DEF,∠DFE,∠EDF也都小于90°,
则△DEF是锐角三角形。
∠CBF=∠BAC是因为∠CBE+∠CBF=90°
CD为直径,则∠DAB+∠BAC=90°
而BO=CO,则∠CBE=∠BCO
又∵∠BCO与∠DAB是同弧所对的圆周角
即∠DAB=∠BCO=∠CBE
∴∠CBF与∠BAC与等角互余则相等
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式