已知a,b,c∈R+且ab+ac+bc=1,求证:根号b/ac+根号a/bc+根号c/ab≥根号3(根号a+根号b+根号c)
2个回答
展开全部
√a/bc+√b/ac+√c/ab
=[(√a)^3+(√b)^3+(√c)^3]/abc
=[(√a)^3+(√b)^3+(√c)^3](ab+bc+ca)/abc
=[(√a)^3+(√b)^3+(√c)^3][(√ab)^2+(√bc)^2+(√ca)^2]/abc
>=3(√a√b√c)(√ab√bc+√ab√ca+√bc√ca)/abc
=3[√(abc)][√(abc)](√a+√b+√c)/abc
=3abc(√a+√b+√c)/abc
=3(√a+√b+√c)
当且仅当a=b=c时等号成立。
=[(√a)^3+(√b)^3+(√c)^3]/abc
=[(√a)^3+(√b)^3+(√c)^3](ab+bc+ca)/abc
=[(√a)^3+(√b)^3+(√c)^3][(√ab)^2+(√bc)^2+(√ca)^2]/abc
>=3(√a√b√c)(√ab√bc+√ab√ca+√bc√ca)/abc
=3[√(abc)][√(abc)](√a+√b+√c)/abc
=3abc(√a+√b+√c)/abc
=3(√a+√b+√c)
当且仅当a=b=c时等号成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询