f(x)是首项系数为1的n次整系数多项式,a1..an是n个两两不同的整数,且f(ai)=-1求证f(x)在有理数域上不可约 10

 我来答
陈jin
2012-11-02 · TA获得超过6005个赞
知道大有可为答主
回答量:3337
采纳率:75%
帮助的人:1156万
展开全部
f(a_i)=-1,i=1...n
所以f(x)+1=0有n个不同的整数根a1..an,且[f(x)+1]首1
假设f(x)在有理数域上可约,不妨设f(x)=g(x)h(x),其中g(x)搭厅,h(x)属于Q[x],次数都小于n,并且首1,则可知g(x),h(x)一定属于Z[x],
所以g(x)h(x)=-1有n不同的整数根肢亩a_i,i=1..n

又因为g(a_1)h(a_1)=-1
所以g(a_1)+h(a_1)=0
所以以此下去得到g(x)+h(x)=0有n个不同的整数根,根据假设g(x)知饥隐+h(x)次数小于n,这显然是不可能的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式