如图,已知△ABC中,AB=AC=6,BC=5,D是AB边上一点,BD=2,E是BC上一动点,联结DE,并作∠DEF=∠B,射线EF交
线段AC与点F。(1)求证:△DBE∽ECF,(2)当点F是线段AC中点时,求线段BE的长(3)联结DF,如果三角形DEF与△DBE相似,求FC的长。...
线段AC与点F。
(1)求证:△DBE∽ECF,(2)当点F是线段AC中点时,求线段BE的长(3)联结DF,如果三角形DEF与△DBE相似,求FC的长。 展开
(1)求证:△DBE∽ECF,(2)当点F是线段AC中点时,求线段BE的长(3)联结DF,如果三角形DEF与△DBE相似,求FC的长。 展开
1个回答
展开全部
(1)先证明△DBE∽△ECF
∵∠B+∠DEB+∠BDE=180°
∠DEB+∠DEF+∠FEC=180°
又∵∠DEF=∠B
∴∠BDE=∠FEC
∵AB=AC
∴∠B=∠C
∴△DBE∽△ECF
(2),前面已经证得 △DBE∽△ECF
∴BD:EC=BE:CF
即2:(5-BE)=BE:3
整理得BE²-5BE+6=0
∴BE=2或BE=3
(3)若△DEF∽△DBE,
前面已经证得△DBE∽△ECF
∴∠BDE=∠EDF,∠DFE=∠CFE
∴点E是△ADF外角平分线DE和EF交点
连接AE,则AE是∠BAC的平分线
又∵AB=AC
∴AE又是底边BC中点
∴BE=CE=5/2
△DEB∽△EFC
∴BD:EC=BE:CF
即2:(5/2)=(5/2):FC
∴FC=25/8
∵∠B+∠DEB+∠BDE=180°
∠DEB+∠DEF+∠FEC=180°
又∵∠DEF=∠B
∴∠BDE=∠FEC
∵AB=AC
∴∠B=∠C
∴△DBE∽△ECF
(2),前面已经证得 △DBE∽△ECF
∴BD:EC=BE:CF
即2:(5-BE)=BE:3
整理得BE²-5BE+6=0
∴BE=2或BE=3
(3)若△DEF∽△DBE,
前面已经证得△DBE∽△ECF
∴∠BDE=∠EDF,∠DFE=∠CFE
∴点E是△ADF外角平分线DE和EF交点
连接AE,则AE是∠BAC的平分线
又∵AB=AC
∴AE又是底边BC中点
∴BE=CE=5/2
△DEB∽△EFC
∴BD:EC=BE:CF
即2:(5/2)=(5/2):FC
∴FC=25/8
追问
FC有两个答案!!一个是2,另一个是什么?
追答
连接AE,则AE是∠BAC的平分线?why
三角形一个内角平分线和另外两个外角的平分线相交于一点。这点叫做三角形的旁心,即旁切圆的圆心。
参考资料: http://zhidao.baidu.com/question/123865719.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询