为什么e^(-x)求的是(n-1)阶麦克劳林公式,而不是n阶
2个回答
展开全部
麦克劳林公式 是泰勒公式(在x。=0下)的一种特殊形式。
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:
f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn
其中Rn是公式的余项,可以是如下:
1.佩亚诺(Peano)余项:
Rn(x) = o(x^n)
2.尔希-罗什(Schlomilch-Roche)余项:
Rn(x) = f(n+1)(θx)(1-θ)^(n+1-p)x^(n+1)/(n!p)
[f(n+1)是f的n+1阶导数,θ∈(0,1)]
3.拉格朗日(Lagrange)余项:
Rn(x) = f(n+1)(θx)x^(n+1)/(n+1)!
[f(n+1)是f的n+1阶导数,θ∈(0,1)]
4.柯西(Cauchy)余项:
Rn(x) = f(n+1)(θx)(1-θ)^n x^(n+1)/n!
[f(n+1)是f的n+1阶导数,θ∈(0,1)]
5.积分余项:
Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n!
[f(n+1)是f的n+1阶导数]
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:
f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn
其中Rn是公式的余项,可以是如下:
1.佩亚诺(Peano)余项:
Rn(x) = o(x^n)
2.尔希-罗什(Schlomilch-Roche)余项:
Rn(x) = f(n+1)(θx)(1-θ)^(n+1-p)x^(n+1)/(n!p)
[f(n+1)是f的n+1阶导数,θ∈(0,1)]
3.拉格朗日(Lagrange)余项:
Rn(x) = f(n+1)(θx)x^(n+1)/(n+1)!
[f(n+1)是f的n+1阶导数,θ∈(0,1)]
4.柯西(Cauchy)余项:
Rn(x) = f(n+1)(θx)(1-θ)^n x^(n+1)/n!
[f(n+1)是f的n+1阶导数,θ∈(0,1)]
5.积分余项:
Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n!
[f(n+1)是f的n+1阶导数]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |