n趋于正无穷,lim[(n^2+1)^(1/2)/(n+1)]^n
展开全部
lim[(n^2+1)^(1/2)/(n+1)]^n=lim{[(n²+1)/(n+1)²])^(1/2)]}^n=lim[(n²+1)/(n²+2n+1)]^n/2
=lim[(n²+2n+1-2n)/(n²+2n+1)]^n/2=lim[1-2n/(n²+2n+1)]^[-(n²+2n+1)/2n×(-2n)/(n²+2n+1)]×n/2]
n趋于正无穷,,则2n/(n²+2n+1)趋于0,(n²+2n+1)/2n趋于正无穷
lim(-2n)/(n²+2n+1)]×n/2=lim[-n²/(n²+2n+1)]=-1
所以n趋于正无穷时lim[1-2n/(n²+2n+1)]^[-(n²+2n+1)/2n×(-2n)/(n²+2n+1)]×n/2]=e^-1=1/e
=lim[(n²+2n+1-2n)/(n²+2n+1)]^n/2=lim[1-2n/(n²+2n+1)]^[-(n²+2n+1)/2n×(-2n)/(n²+2n+1)]×n/2]
n趋于正无穷,,则2n/(n²+2n+1)趋于0,(n²+2n+1)/2n趋于正无穷
lim(-2n)/(n²+2n+1)]×n/2=lim[-n²/(n²+2n+1)]=-1
所以n趋于正无穷时lim[1-2n/(n²+2n+1)]^[-(n²+2n+1)/2n×(-2n)/(n²+2n+1)]×n/2]=e^-1=1/e
展开全部
lim[(n^2+1)^(1/2)/(n+1)]^n
=lim[1+(n^2+1)^(1/2)/(n+1)-1]^n
=lim{[1+(n^2+1)^(1/2)/(n+1)-1]^(1/[(n^2+1)^(1/2)/(n+1)-1]}^n[n^2+1)^(1/2)/(n+1)-1]
指数[1+(n^2+1)^(1/2)/(n+1)-1]^(1/[(n^2+1)^(1/2)/(n+1)-1]趋于e
指数n[n^2+1)^(1/2)/(n+1)-1]
=(n/(n+1)*(n^2+1)^(1/2)-n-1)
=(n/(n+1)*(n^2+1-n^2-1-2n)/((n^2+1)^(1/2)+n+1)
==(n/(n+1)* (-2n)/[(n^2+1)^(1/2)+n+1] (分子分母除以n)
趋于-1
极限为1/e
=lim[1+(n^2+1)^(1/2)/(n+1)-1]^n
=lim{[1+(n^2+1)^(1/2)/(n+1)-1]^(1/[(n^2+1)^(1/2)/(n+1)-1]}^n[n^2+1)^(1/2)/(n+1)-1]
指数[1+(n^2+1)^(1/2)/(n+1)-1]^(1/[(n^2+1)^(1/2)/(n+1)-1]趋于e
指数n[n^2+1)^(1/2)/(n+1)-1]
=(n/(n+1)*(n^2+1)^(1/2)-n-1)
=(n/(n+1)*(n^2+1-n^2-1-2n)/((n^2+1)^(1/2)+n+1)
==(n/(n+1)* (-2n)/[(n^2+1)^(1/2)+n+1] (分子分母除以n)
趋于-1
极限为1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询