如图,已知在△ABC中,BD、CE分别是AC、AB边上的高,G、F分别是BC、DE的中点.⑴试探索FG与DE的关系 15

.⑵ED=7,BC=12,求△EGD的周长... .⑵ED=7,BC=12,求△EGD的周长 展开
月咏忆殇
2013-01-05 · TA获得超过235个赞
知道答主
回答量:52
采纳率:100%
帮助的人:16.3万
展开全部
解:(1)FG垂直平分DE,
证明:连接GD、GE.
∵BD是△ABC的高,G为BC的中点,
∴在Rt△CBD中,GD=1/2 BC,(直角三角形斜边上的中线等于斜边的一半)
同理可得GE=1/2BC,
∴GD=GE,
∵F是DE的中点,(等腰三角形三线合一)
∴FG⊥DE.
(2)△EGD的周长等于GE+GD+DE=1/2BC+1/2BC+DE=12+7=19.
ccy1999216
2013-01-15
知道答主
回答量:8
采纳率:0%
帮助的人:1万
展开全部
1)FG垂直平分DE。连接EG,DG,因为BD垂直AC,CE垂直AB,G为BC中点,而BC同时为直角三角形BCE和BCD的斜边,所以DG=1/2BC,EG=1/2BC,DG=EG,三角形DEG为等腰三角形,所以GF垂直平分DE。
(2)DG=EG=1/2BC=6,三角形EGD周长为DG+EG+DE=6+6+7=19
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
沉睡的狗儿
2012-11-02
知道答主
回答量:14
采纳率:0%
帮助的人:9.7万
展开全部
(1)FG垂直平分DE。连接EG,DG,因为BD垂直AC,CE垂直AB,G为BC中点,而BC同时为直角三角形BCE和BCD的斜边,所以DG=1/2BC,EG=1/2BC,DG=EG,三角形DEG为等腰三角形,所以GF垂直平分DE。
(2)DG=EG=1/2BC=6,三角形EGD周长为DG+EG+DE=6+6+7=19.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
方祜桔TD
2012-11-02 · TA获得超过303个赞
知道答主
回答量:49
采纳率:0%
帮助的人:49.4万
展开全部
垂直的,你连接EG DG,发现EG=DG=1/2(BC)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式