求证一道数学题,真高手来
设f(x)在[0,1]上连续,且f(0)=f(1),证明存在ξ∈[0,1]使f(ξ+1/n)=f(ξ),n为定值,且为正整数...
设f(x)在[0,1]上连续,且f(0)=f(1),证明存在ξ∈[0,1]使f(ξ+1/n)=f(ξ),n为定值,且为正整数
展开
3个回答
展开全部
设 F[x]=f(x+1/n)-f(x) (转化为求这个函数存在零点)
F[(n-1)/n]=f(1)-f(1-(1/n))
F(0)=f(1/n)-f(0)
上面两个式子相加 得 F[(n-1)/n]+F(0)=f(1/n)-f(1-(1/n))
另1/n=1-(1/n) 即n=2时 F[(n-1)/n]+F(0)=0
两种情况:①.[0,1]上恒为0 肯定到处都是零点
②不恒为0 那么F[(n-1)/n]和F(0)异号 又知其连续
那么必存在一点ξ使得F(ξ)=0 既原命题成立
F[(n-1)/n]=f(1)-f(1-(1/n))
F(0)=f(1/n)-f(0)
上面两个式子相加 得 F[(n-1)/n]+F(0)=f(1/n)-f(1-(1/n))
另1/n=1-(1/n) 即n=2时 F[(n-1)/n]+F(0)=0
两种情况:①.[0,1]上恒为0 肯定到处都是零点
②不恒为0 那么F[(n-1)/n]和F(0)异号 又知其连续
那么必存在一点ξ使得F(ξ)=0 既原命题成立
更多追问追答
追问
算了,我还是明天再决定吧
追答
不是谁告诉我n=2 是我自己求出来的
注意看第4排 我是令 F[(n-1)/n]+F(0)=f(1/n)-f(1-(1/n)) =0
那么f(1/n)-f(1-(1/n)) =0 那么f(1/n)=f(1-(1/n)) 那么1/n=1-(1/n)) 那么n=2 懂了吧!
而且不是骗什么分 我自己自己再学高数 ,然后在你们问的问题发现我自己的漏洞谢谢
采纳什么的你给我不给我都无所谓的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |