
下列反常函数是否收敛?如果收敛,计算反常积分的值
2个回答
展开全部
解:p>0时,是收敛的。分享一种解法,利用欧拉公式“快捷”求解。
设I1=∫(0,∞)e^(-pt)sin(ωt)dt,I2=∫(0,∞)e^(-pt)cos(ωt)dt,
∴I2+iI1=∫(0,∞)e^[-(p-ωi)t]dt=1/(p-ωi)=(p+ωi)/(p^2+ω^2),∴原式=I1=ω/(p^2+ω^2)。
供参考。
设I1=∫(0,∞)e^(-pt)sin(ωt)dt,I2=∫(0,∞)e^(-pt)cos(ωt)dt,
∴I2+iI1=∫(0,∞)e^[-(p-ωi)t]dt=1/(p-ωi)=(p+ωi)/(p^2+ω^2),∴原式=I1=ω/(p^2+ω^2)。
供参考。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |