
在△ABC中,角A,B,C的对边分别是a,b,c,若a=2根号3,A=2/3π,且sinB+sinC=1,求△ABC的面积
展开全部
正弦定理a/sinA=b/sinB=c/sinC
a/sinA = 4
sinB+sinC = 1 = (b+c)/4
b+c =4
余弦定理a^2 = b^2 +c^2 -2bccosA = b^2+c^2 +bc = 12
解b=c=2
△ABC的面积=1/2 bcsinA = sqrt(3)
a/sinA = 4
sinB+sinC = 1 = (b+c)/4
b+c =4
余弦定理a^2 = b^2 +c^2 -2bccosA = b^2+c^2 +bc = 12
解b=c=2
△ABC的面积=1/2 bcsinA = sqrt(3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询