微积分求大神解答
展开全部
设 θ = arctanx。则 x = tanθ,dx = sec²θdθ。θ 的积分范围为:θ=π/4 →π/2
那么,原积分就变换为:
=∫θ*sec²θdθ/tan²θ
=∫θdθ/sin²θ
=∫θ*csc²θ*dθ
需要使用分部积分法:
=θ*(-ctgθ) + ∫ctgθ*dθ
=-[(π/2)*ctg(π/2) - (π/4)*ctg(π/4)] + ∫cosθ*dθ/sinθ
=-[(π/2)*0 - (π/4)*1] + ∫d(sinθ)/sinθ
=π/4 + ln(sinθ)|θ=π/4 →π/2
=π/4 + [ln(π/2) - ln(π/4)]
=π/4 + ln2
那么,原积分就变换为:
=∫θ*sec²θdθ/tan²θ
=∫θdθ/sin²θ
=∫θ*csc²θ*dθ
需要使用分部积分法:
=θ*(-ctgθ) + ∫ctgθ*dθ
=-[(π/2)*ctg(π/2) - (π/4)*ctg(π/4)] + ∫cosθ*dθ/sinθ
=-[(π/2)*0 - (π/4)*1] + ∫d(sinθ)/sinθ
=π/4 + ln(sinθ)|θ=π/4 →π/2
=π/4 + [ln(π/2) - ln(π/4)]
=π/4 + ln2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询