根据极限定义证明:函数f(x)当x→Xo时极限存在的充分必要条件是左极限、右极限各自存在并且相等。
展开全部
证明:
必要性:因为f(x)当x→Xo时极限存在,设为A,则f(x)-A的绝对值<E,则f(x)-A<E,为右极限存在,f(x)-A>-E,A-f(x)<E,故左极限存在。
证明充分性时,是由左右极限的定义出发,证明出符合极限的定义。而函数的极限定义是对任一ε而言的,ε虽然可任意取得,但一经指定,它就是固定的。
证明的过程运用左右极限的定义时,若不选取同一ε,而选不同的ε1、ε2,就不符合极限定义,即不能得出对开始任意指定的ε,有|f(x)–A|<ε的结论。
N的相应性
一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
2012-11-04
展开全部
asdfasdfasdf
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
充分性:(已知左右极限存在且相等,证明极限存在)
设lim[x→x0+] f(x)=A,lim[x→x0-] f(x)=A
由lim[x→x0+] f(x)=A,则对于任意ε>0,存在δ1>0,当0<x-x0<δ1时,有|f(x)-A|<ε成立;
又由lim[x→x0-] f(x)=A,存在δ2>0,当 -δ2<x-x0<0 时,有|f(x)-A|<ε成立;
取δ=min{δ1,δ2},则当0<|x-x0|<δ时,
若x>x0,则0<|x-x0|<δ≤δ1成立,
若x<x0,则-δ2≤-δ<x-x0<0成立,
因此无论哪种情况,均有|f(x)-A|<ε成立,因此lim[x→x0] f(x)=A。
必要性:(已知极限存在,证明左右极限存在并相等)
由lim[x→x0] f(x)=A,则任取ε>0,存在δ>0,当0<|x-x0|<δ时,有|f(x)-A|<ε成立
此时有:0<x-x0<δ时,|f(x)-A|<ε成立,因此lim[x→x0+] f(x)=A;
同理,此时有:-δ<x-x0<0 时,|f(x)-A|<ε成立,因此lim[x→x0-] f(x)=A。
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。
设lim[x→x0+] f(x)=A,lim[x→x0-] f(x)=A
由lim[x→x0+] f(x)=A,则对于任意ε>0,存在δ1>0,当0<x-x0<δ1时,有|f(x)-A|<ε成立;
又由lim[x→x0-] f(x)=A,存在δ2>0,当 -δ2<x-x0<0 时,有|f(x)-A|<ε成立;
取δ=min{δ1,δ2},则当0<|x-x0|<δ时,
若x>x0,则0<|x-x0|<δ≤δ1成立,
若x<x0,则-δ2≤-δ<x-x0<0成立,
因此无论哪种情况,均有|f(x)-A|<ε成立,因此lim[x→x0] f(x)=A。
必要性:(已知极限存在,证明左右极限存在并相等)
由lim[x→x0] f(x)=A,则任取ε>0,存在δ>0,当0<|x-x0|<δ时,有|f(x)-A|<ε成立
此时有:0<x-x0<δ时,|f(x)-A|<ε成立,因此lim[x→x0+] f(x)=A;
同理,此时有:-δ<x-x0<0 时,|f(x)-A|<ε成立,因此lim[x→x0-] f(x)=A。
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询