不定积分根号下(1-x^2)/x
3个回答
展开全部
令√(1-x^2)=u,则1-x^2=u^2,∴x^2=1-u^2,∴d(x^2)=-2udu。
∴∫[√(1-x^2)/x]dx
=(1/2)∫[√(1-x^2)/x^2]d(x^2)
=(1/2)∫[u/(1-u^2)](-2u)du
=∫[u^2/(u^2-1)]du
=∫[(u^2-1+1)/(u^2-1)]du
=∫[1+1/(u^2-1)]du
=∫du+∫[1/(u^2-1)]du
=u+(1/2)∫[(u+1-u+1)/(u^2-1)]du
=√(1-x^2)+(1/2)∫[1/(u-1)]du-(1/2)∫[1/(u+1)]du
=√(1-x^2)+(1/2)ln|u-1|-(1/2)ln|u+1|+C
=√(1-x^2)+(1/2)ln|√(1-x^2)-1|-(1/2)ln|√(1-x^2)+1|+C。
=√(1-x^2)+(1/2)ln|[√(1-x^2)-1]/[√(1-x^2)+1]|+C
=√(1-x^2)+(1/2)ln|[1-√(1-x^2)]/[1+√(1-x^2)]|+C
=√(1-x^2)+(1/2)ln|[1-√(1-x^2)]^2/[1-(1-x^2)]|+C
=√(1-x^2)+(1/2)ln|[1-√(1-x^2)]/x|^2+C
=√(1-x^2)+ln|[1-√(1-x^2)]/x|+C
∴∫[√(1-x^2)/x]dx
=(1/2)∫[√(1-x^2)/x^2]d(x^2)
=(1/2)∫[u/(1-u^2)](-2u)du
=∫[u^2/(u^2-1)]du
=∫[(u^2-1+1)/(u^2-1)]du
=∫[1+1/(u^2-1)]du
=∫du+∫[1/(u^2-1)]du
=u+(1/2)∫[(u+1-u+1)/(u^2-1)]du
=√(1-x^2)+(1/2)∫[1/(u-1)]du-(1/2)∫[1/(u+1)]du
=√(1-x^2)+(1/2)ln|u-1|-(1/2)ln|u+1|+C
=√(1-x^2)+(1/2)ln|√(1-x^2)-1|-(1/2)ln|√(1-x^2)+1|+C。
=√(1-x^2)+(1/2)ln|[√(1-x^2)-1]/[√(1-x^2)+1]|+C
=√(1-x^2)+(1/2)ln|[1-√(1-x^2)]/[1+√(1-x^2)]|+C
=√(1-x^2)+(1/2)ln|[1-√(1-x^2)]^2/[1-(1-x^2)]|+C
=√(1-x^2)+(1/2)ln|[1-√(1-x^2)]/x|^2+C
=√(1-x^2)+ln|[1-√(1-x^2)]/x|+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询