求解因式分解x(2x-1)(2x-5)(x-2)-3
展开全部
原式
=[(x-1)+1][(x-1)-1][(2x-3)+2][(2x-3)-2]-3
=[(x-1)^2-1][(2x-3)^2-4]-3
=(x-1)^2[(2x-3)^2-4]-[(2x-3)^2-4]-3
=(x-1)^2[(4x^2-12x+9)-4]-[(2x-3)^2-1]
=(x-1)^2(4x^2-12x+5)-[(2x-3)-1][(2x-3)+1]
=(x-1)^2(4x^2-12x+5)-4(x-2)(x-1)
=(x-1)[(x-1)(4x^2-12x+5)-4(x-2)]
=(x-1)(4x^3-12x^2+5x-4x^2+12x-5-4x+8)
=(x-1)(4x^3-16x^2+13x+3)
=[(x-1)+1][(x-1)-1][(2x-3)+2][(2x-3)-2]-3
=[(x-1)^2-1][(2x-3)^2-4]-3
=(x-1)^2[(2x-3)^2-4]-[(2x-3)^2-4]-3
=(x-1)^2[(4x^2-12x+9)-4]-[(2x-3)^2-1]
=(x-1)^2(4x^2-12x+5)-[(2x-3)-1][(2x-3)+1]
=(x-1)^2(4x^2-12x+5)-4(x-2)(x-1)
=(x-1)[(x-1)(4x^2-12x+5)-4(x-2)]
=(x-1)(4x^3-12x^2+5x-4x^2+12x-5-4x+8)
=(x-1)(4x^3-16x^2+13x+3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询