如图,在等腰三角形ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE
4个回答
展开全部
证明:∵AB=AC,
∴∠B=∠C.
∵OD⊥AB,OE⊥AC,
∴∠ODB=∠OEC=90°.
∵OB=OC,
∴△OBD≌△OCE.
∴BD=CE.
∵AB=AC,
∴AB-BD=AC-CE.
即AD=AE.
选我!!!!
∴∠B=∠C.
∵OD⊥AB,OE⊥AC,
∴∠ODB=∠OEC=90°.
∵OB=OC,
∴△OBD≌△OCE.
∴BD=CE.
∵AB=AC,
∴AB-BD=AC-CE.
即AD=AE.
选我!!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵AB=AC,
∴∠B=∠C.
∵OD⊥AB,OE⊥AC,
∴∠ODB=∠OEC=90°.
∵OB=OC,
∴△OBD≌△OCE.
∴BD=CE.
∵AB=AC,
∴AB-BD=AC-CE.
即AD=AE.
选我!!!!!
∴∠B=∠C.
∵OD⊥AB,OE⊥AC,
∴∠ODB=∠OEC=90°.
∵OB=OC,
∴△OBD≌△OCE.
∴BD=CE.
∵AB=AC,
∴AB-BD=AC-CE.
即AD=AE.
选我!!!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵AB=AC,
∴∠B=∠C.
∵OD⊥AB,OE⊥AC,
∴∠ODB=∠OEC=90°.
∵OB=OC,
∴△OBD≌△OCE.
∴BD=CE.
∵AB=AC,
∴AB-BD=AC-CE.
即AD=AE.
∴∠B=∠C.
∵OD⊥AB,OE⊥AC,
∴∠ODB=∠OEC=90°.
∵OB=OC,
∴△OBD≌△OCE.
∴BD=CE.
∵AB=AC,
∴AB-BD=AC-CE.
即AD=AE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询