在数列{an}中,a1=2, an+1=4an-3n+1

(1)证明数列{(an)-n}是等比数列(2)求数列{an}的前n项和Sn,... (1)证明数列{(an)-n}是等比数列
(2)求数列{an}的前n项和Sn ,
展开
Flying3689
2012-11-03 · TA获得超过2787个赞
知道小有建树答主
回答量:650
采纳率:0%
帮助的人:272万
展开全部
第1问:
设数列{bn},令bn=an-n
则an=bn+n
代入a(n+1)=4an-3n+1
得b(n+1)+n+1=4(bn+n)-3n+1
化简得b(n+1)=4bn
所以数列{bn}即数列{an-n}是公比为4的等比数列

第2问:
b1=a1-1=2-1=1
bn=b1*q^(n-1)=4^(n-1)
an=bn+n=4^(n-1)+n
Sn=a1+a2+……+an
=(1+1)+(4+2)+……+[4^(n-1)+n]
=[1+4+……+4^(n-1)]+(1+2+……+n)
=1*(1-4^n)/(1-4)+n(n+1)/2
=(4^n-1)/3+n(n+1)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式