已知数列{an}是等比数列,首项a1=8,公比q>0,令bn=log2an,设sn为{bn}的前n项和,若

Sn为{bn}的前n项和,若数列{Bn}的前7项和S7最大,且S7不等于S8,求数列{an}的公比q的取值范围... Sn为{bn}的前n项和,若数列{Bn}的前7项和S7最大,且S7不等于S8,求数列{an}的公比q的取值范围 展开
xuzhouliuying
高粉答主

2012-11-03 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
a1>0 q>0,an=a1q^(n-1)>0,数列为正项数列。
an=a1×q^(n-1)
bn=log2(an)=log2[a1q^(n-1)]=log2(a1)+(n-1)log2(q)
b(n+1)=log2(a1)+nlog2(q)
b(n+1)-bn=log2(q),为定值。
b1=log2(a1)=log2(8)=3
数列{bn}是以3为首项,log2(q)为公差的等差数列。
bn=3+(n-1)log2(q)
数列前7项和最大,且S7≠S8,即b7>0 b8<0
3+(7-1)log2(q)>0,整理,得2log2(q)>-1 log2(q)>-1/2 q>√2/2
3+(8-1)log2(q)<0 ,整理,得log2(q)<-3/7 q<(1/2)^(3/7)
综上,得√2/2<q<(1/2)^(3/7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式