高中柯西不等式证明问题求解

条件:正实数满足a+b+c=1①.求(a+1/a)²+(b+1/b)²+(c+1/c)²的最小值②.若a²/(1+a)+b... 条件:正实数满足a+b+c=1
①.求(a+1/a)²+(b+1/b)²+(c+1/c)²的最小值
②.若a²/(1+a)+b²/(1+b)+c²/(1+c)=1/4 求abc的值
展开
linsq1990
2012-11-04 · TA获得超过162个赞
知道小有建树答主
回答量:114
采纳率:0%
帮助的人:45.1万
展开全部
第一题:【By 西陵楚客】
由柯西不等式
(a+b+c)(1/a+1/b+1/c)>=(a*1/a+b*1/b+c*1/c)^2=(1+1+1)^2=9
a+b+c=1
所以1/a+1/b+1/c>=9
又由柯西不等式
[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2](1+1+1)
>=[(a+1/a)*1+(b+1/b)*1+(c+1/c)]^2
=[(a+b+c)+(1/a+1/b+1/c)]^2
=[1+(1/a+1/b+1/c)]^2
>=(1+9)^2=100
即3[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2]>=100
所以(a+1/a)^2+(b+1/b)^2+(c+1/c)^2>=100/3
所以最小值=100/3

第二题:
由柯西不等式:
[(1+a)+(1+b)+(1+c)][a²/(1+a)+b²/(1+b)+c²/(1+c)]>=(a+b+c)^2
故:
a²/(1+a)+b²/(1+b)+c²/(1+c)>=1/4

等号当且仅当:a²/(1+a) :(1+a)=b²/(1+b) :(1+b)=c²/(1+c) :(1+c)
即a/(1+a)=b/(1+b)=c/(1+c),也即a=b=c=1/3时成立
故abc=1/27
西陵楚客
2012-11-03
知道答主
回答量:16
采纳率:0%
帮助的人:9.9万
展开全部
由柯西不等式
(a+b+c)(1/a+1/b+1/c)>=(a*1/a+b*1/b+c*1/c)^2=(1+1+1)^2=9
a+b+c=1
所以1/a+1/b+1/c>=9

又由柯西不等式
[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2](1+1+1)
>=[(a+1/a)*1+(b+1/b)*1+(c+1/c)]^2
=[(a+b+c)+(1/a+1/b+1/c)]^2
=[1+(1/a+1/b+1/c)]^2
>=(1+9)^2=100
即3[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2]>=100
所以(a+1/a)^2+(b+1/b)^2+(c+1/c)^2>=100/3
所以最小值=100/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式