分解因式a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2
展开全部
解:
a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2
=(a^4-2a^2b^2+b^4)-2a^2c^2+2b^2c^2+c^4-4b^2c^2
=(a^2-b^2)^2-2c^2*(a^2-b^2)+c^4-4b^2c^2
=(a^2-b^2-c^2)^2-4b^2c^2
=(a^2-b^2-c^2+2bc)(a^2-b^2-c^2-2bc)
=[a^2-(b^2-2bc+c^2)][a^2-(b^2+2bc+c^2)]
=[a^2-(b-c)^2][a^2-(b+c)^2]
=(a+b-c)(a-b+c)(a+b+c)(a-b-c)
a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2
=(a^4-2a^2b^2+b^4)-2a^2c^2+2b^2c^2+c^4-4b^2c^2
=(a^2-b^2)^2-2c^2*(a^2-b^2)+c^4-4b^2c^2
=(a^2-b^2-c^2)^2-4b^2c^2
=(a^2-b^2-c^2+2bc)(a^2-b^2-c^2-2bc)
=[a^2-(b^2-2bc+c^2)][a^2-(b^2+2bc+c^2)]
=[a^2-(b-c)^2][a^2-(b+c)^2]
=(a+b-c)(a-b+c)(a+b+c)(a-b-c)
追问
是+2b^2c^2not-2b^2c^2
追答
利用(x+y+z)²=x²+y²+z²+2xy+2yz+2xy
然后令y=-a^2,y=b^2,z=c^2
可得a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2=(-a^2+b^2+c^2)²
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询