已知函数f(x)=2sinxcosx-2cos^2x求函数的最小正周期,当x属于o,二分之兀时,f(x)的取值范围,急求!!!
展开全部
解:
f(x)=2sinxcosx-2cos²x
=sin2x-1-cos2x
=√2(√2/2 sin2x-√2/2 cos2x)-1
=√2(cosπ/4 sin2x-sinπ/4 cos2x)-1
=√2 sin(2x-π/4)-1
所以最小正周期T=2π/2=π
当x∈[0,π/2]时
0≤2x≤π
-π/4≤2x-π/4≤3π/4
所以当2x-π/4=-π/4时,f(x)取得最小值-√2·√2/2-1=-2
当2x-π/4=π/2时,f(x)取得最大值√2-1
所以f(x)取值范围:[-2,√2-1]
f(x)=2sinxcosx-2cos²x
=sin2x-1-cos2x
=√2(√2/2 sin2x-√2/2 cos2x)-1
=√2(cosπ/4 sin2x-sinπ/4 cos2x)-1
=√2 sin(2x-π/4)-1
所以最小正周期T=2π/2=π
当x∈[0,π/2]时
0≤2x≤π
-π/4≤2x-π/4≤3π/4
所以当2x-π/4=-π/4时,f(x)取得最小值-√2·√2/2-1=-2
当2x-π/4=π/2时,f(x)取得最大值√2-1
所以f(x)取值范围:[-2,√2-1]
展开全部
解答:
f(x)=2sinxcosx-2cos^2x
=sin2x-(1+cos2x)
=sin2x-cos2x-1
=√2[cos(π/4)sin2x-sin(π/4)*cos2x]-1
=√2sin(2x-π/4)-1
(1)最小正周期为T=2π/2=π;
(2)x∈[0,π/2]
则2x-π/4∈[-π/4,3π/4]
∴ sin(2x-π/4)∈[-√2/2,1]
∴ f(x)的取值范围是[-2,√2-1]
f(x)=2sinxcosx-2cos^2x
=sin2x-(1+cos2x)
=sin2x-cos2x-1
=√2[cos(π/4)sin2x-sin(π/4)*cos2x]-1
=√2sin(2x-π/4)-1
(1)最小正周期为T=2π/2=π;
(2)x∈[0,π/2]
则2x-π/4∈[-π/4,3π/4]
∴ sin(2x-π/4)∈[-√2/2,1]
∴ f(x)的取值范围是[-2,√2-1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询