线性代数的一道填空题,麻烦谁进来看看
设齐次线性方程组tx1+x2+(t^2)x3=0;x1+tx2+x3=0;x1+x2+tx3=0系数矩阵为A,若存在三阶矩阵B不等于0,使得AB=0,则t等于多少,B的行...
设齐次线性方程组tx1+x2+(t^2)x3=0;x1+tx2+x3=0;x1+x2+tx3=0系数矩阵为A,若存在三阶矩阵B不等于0,使得AB=0,则t等于多少,B的行列式等于多少?答案是t=1,B的行列式为零。有谁能给我解释一下?
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询