误差理论与测量平差怎么判断是用条件平差还是间接平差
1个回答
展开全部
对一个平差问题,不论采用何种测量平差模型,都具备如下共同之处,即模型中待求量的个数都多于其方程的个数,它们都是具有无穷多组解的相容方程组;都采用最小二乘准则作为约束条件,来求唯一的一组最优解;对同一个平差问题,无论采用哪种模型进行平差,其最后结果,包括任何一个量的平差值和精度都是相同的。
尽管如此,由于每种平差方法都有其自身的特点,所以,在实际应用时,应综合考虑计算工作量的大小、方程列立的难易程度、所要解决问题的性质和要求以及计算工具等因素,选择合适的平差方法。为此,应了解各种平差方法的特点。
条件平差法是一种不选任何参数的平差方法,通过列立观测值的平差值之间满足r个条件方程来建立函数模型,方程的个数为c=r个,法方程的个数也为r个,通过平差可以直接求得观测值的平差值,是一种基本的平差方法。但该方法相对于间接平差而言,精度评定较为复杂,对于已知点较多的大型平面网,条件式较多而列立复杂、规律不明显。
间接平差需要选择u=t个参数,而且要求这t个参数必须独立,模型建立的方法是将每一个观测值表示为所选参数的函数,方程的个数为c=r+u=n个,法方程的个数为t个,通过解算法方程可以直接求得参数的平差值。最大的优点是方程的列立规律性强,便于用计算机编程解算;另外精度评定非常便利;再者,所选参数往往就是平差后所需要的成果。如水准网中选待定点高程作参数,平面网中选待定点的坐标作参数。
由于r+t=n,说明条件平差与间接平差的法方程个数之和等于观测值个数,因此,当某一平差问题的r与t相差较大时,若r<t,通常采用条件平差;若r>t,则采用间接平差,这样就可保证法方程的阶数较少。
由此看来,各种平差方法各有特点,有些特点是其它方法难以代替的,没有哪一种方法比另一种方法更占绝对优势,因此,对于不同的平差问题,究竟采用哪一种模型,应具体问题具体分析。
尽管如此,由于每种平差方法都有其自身的特点,所以,在实际应用时,应综合考虑计算工作量的大小、方程列立的难易程度、所要解决问题的性质和要求以及计算工具等因素,选择合适的平差方法。为此,应了解各种平差方法的特点。
条件平差法是一种不选任何参数的平差方法,通过列立观测值的平差值之间满足r个条件方程来建立函数模型,方程的个数为c=r个,法方程的个数也为r个,通过平差可以直接求得观测值的平差值,是一种基本的平差方法。但该方法相对于间接平差而言,精度评定较为复杂,对于已知点较多的大型平面网,条件式较多而列立复杂、规律不明显。
间接平差需要选择u=t个参数,而且要求这t个参数必须独立,模型建立的方法是将每一个观测值表示为所选参数的函数,方程的个数为c=r+u=n个,法方程的个数为t个,通过解算法方程可以直接求得参数的平差值。最大的优点是方程的列立规律性强,便于用计算机编程解算;另外精度评定非常便利;再者,所选参数往往就是平差后所需要的成果。如水准网中选待定点高程作参数,平面网中选待定点的坐标作参数。
由于r+t=n,说明条件平差与间接平差的法方程个数之和等于观测值个数,因此,当某一平差问题的r与t相差较大时,若r<t,通常采用条件平差;若r>t,则采用间接平差,这样就可保证法方程的阶数较少。
由此看来,各种平差方法各有特点,有些特点是其它方法难以代替的,没有哪一种方法比另一种方法更占绝对优势,因此,对于不同的平差问题,究竟采用哪一种模型,应具体问题具体分析。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询