求∫√x/1+x√xdx在上下限1到4的定积分。 5
3个回答
展开全部
令t=√x,则dx=tdt,积分限变为1到2,原式化为∫ t2/(1+t3)dt=∫ {1/[3(1+t)]+(2t-1)/[3(t2-t+1)]}dt=
(1/3)ln(1+t)+∫ 1/[3(t2-t+1)]d(t2-t+1),原式化为(1/3)ln(1+t)(1到2)加上
(1/3)ln(t2-t+1) (1到2) 结果是(1/3)ln(3/2)+(1/3)ln3=(1/3)ln(9/2)
(1/3)ln(1+t)+∫ 1/[3(t2-t+1)]d(t2-t+1),原式化为(1/3)ln(1+t)(1到2)加上
(1/3)ln(t2-t+1) (1到2) 结果是(1/3)ln(3/2)+(1/3)ln3=(1/3)ln(9/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令u = 1 + x√x = 1 + x^(3/2)
du = (3/2)√x dx
x = 1 --> u = 2
x = 4 --> u = 9
∫(1,4) √x/(1 + x√x) dx
= ∫(2,9) √x/u * (2/3)(1/√x) du
= (2/3)∫(2,9) du/u
= (2/3)ln| u | (2,9)
= (2/3)[ln(9) - ln(2)]
= (2/3)ln(9/2)
du = (3/2)√x dx
x = 1 --> u = 2
x = 4 --> u = 9
∫(1,4) √x/(1 + x√x) dx
= ∫(2,9) √x/u * (2/3)(1/√x) du
= (2/3)∫(2,9) du/u
= (2/3)ln| u | (2,9)
= (2/3)[ln(9) - ln(2)]
= (2/3)ln(9/2)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询