如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线
a于点n,BM⊥直线a于点n连接PM、PN,延长mp交cn于点e。(1)求证三角形全等三角形cpe,,(2)求证pm=pn...
a于点n,BM⊥直线a于点n连接PM、PN,延长mp交cn于点e。(1)求证三角形全等三角形cpe,,(2)求证pm=pn
展开
2个回答
展开全部
(1) 证明:j 如图2,∵BM⊥直线a于点M,CN⊥直线a于点N,
∴ÐBMN=ÐCNM=90°,∴BM//CN,∴ÐMBP=ÐECP,
又∵P为BC边中点,∴BP=CP,又∵ÐBPM=ÐCPE,∴△BPM@△CPE,
k ∵△BPM@△CPE,∴PM=PE,∴PM=1/2 ME,∴在Rt△MNE中,PN=1/2 ME,
∴PM=PN;
(2) 成立,如图3,
证明 延长MP与NC的延长线相交于点E,∵BM^直线a于点M,CN^直线a于点N,
∴ÐBMN=ÐCNM=90°,∴ÐBMN ÐCNM=180°,∴BM//CN,∴ÐMBP=ÐECP,
又∵P为BC中点,∴BP=CP,又∵ÐBPM=ÐCPE,∴△BPM@△CPE,∴PM=PE,
∴PM=1/2 ME,则在Rt△MNE中,PN=1/2 ME,∴PM=PN。
(3) 四边形MBCN是矩形,PM=PN成立。
∴ÐBMN=ÐCNM=90°,∴BM//CN,∴ÐMBP=ÐECP,
又∵P为BC边中点,∴BP=CP,又∵ÐBPM=ÐCPE,∴△BPM@△CPE,
k ∵△BPM@△CPE,∴PM=PE,∴PM=1/2 ME,∴在Rt△MNE中,PN=1/2 ME,
∴PM=PN;
(2) 成立,如图3,
证明 延长MP与NC的延长线相交于点E,∵BM^直线a于点M,CN^直线a于点N,
∴ÐBMN=ÐCNM=90°,∴ÐBMN ÐCNM=180°,∴BM//CN,∴ÐMBP=ÐECP,
又∵P为BC中点,∴BP=CP,又∵ÐBPM=ÐCPE,∴△BPM@△CPE,∴PM=PE,
∴PM=1/2 ME,则在Rt△MNE中,PN=1/2 ME,∴PM=PN。
(3) 四边形MBCN是矩形,PM=PN成立。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询