如图,在以O为圆心的两个同心圆中,大圆的弦AB和AC分别和小圆相切于点D和E

1、AB与AC相等吗?为什么?2、连接BC,若两圆的半径分别为3和5,试判断BC与与小圆的位置关系,并说明理由3、当大圆半径R与小圆半径r满足怎样的条件时,线段BC与小圆... 1、AB与AC相等吗?为什么?
2、连接BC,若两圆的半径分别为3和5,试判断BC与与小圆的位置关系,并说明理由
3、当大圆半径R与小圆半径r满足怎样的条件时,线段BC与小圆相切
展开
西山樵夫
2012-11-05 · TA获得超过2.3万个赞
知道大有可为答主
回答量:9435
采纳率:50%
帮助的人:4575万
展开全部
解:1),AB=AC,连接OD,OE,因为OD,OE是小圆的半径,所以OD=OE,由于AB,CD切小圆与D,E,所以OD⊥AB,OE⊥AC,即大圆的弦AB,AC的弦心距相等,所以AB=AC.。 2),过O做BC的垂线OF,交BC于F,连结OB,则在Rt△OBF中OB>OF,即OF<5,若OF=3,则BC与小圆相切:若OF>3则BC与小圆相离。 3),显然:三边都与小圆相切的三角形是等边三角形,所以当r=Rcos60°=1/2R时,BC与小圆相切。
飘渺的绿梦2
2012-11-05 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4286
采纳率:84%
帮助的人:1714万
展开全部
第一个问题:AB=AC。
[证明]
∵AB、AC分别切中圆O于D、E,∴OD=OE。
∵AB、AC是大圆O的两弦,∴AB=AC(同圆中,弦心距相等的弦长也相等)。

第二个问题:BC与小圆O相交。
[证明]
取BC的中点为F。
∵AD切小圆O于D,∴AD⊥DO,
∴由勾股定理,有:AD=√(AO^2-OD^2)=√(25-9)=4。
∵OD⊥AB,∴AB=2AD=8。
∵AB=AC、BF=CF,∴AF⊥BF。
由∠OAD=∠BAF、∠ADO=∠AFB,得:△AOD∽△ABF,∴AD/AO=AF/AB,
∴4/5=AF/8,∴AF=32/5。

∵AB=AC、BF=CF,∴∠BAF=∠CAF。
∵AB、AC分别切小圆O于D、E,∴∠BAO=∠CAO。
由∠BAF=∠CAF、∠BAO=∠CAO,得:A、O、F都在∠BAC的平分线上,
∴OF=AF-AO=32/5-5=7/5<3,∴点F在小圆O内,∴BC与小圆O相交。

第三个问题:
当BC与小圆O相切时,有:AB=AC=BC,∴O是△ABC的内心,也是它的重心,
∴OA=2OF,∴R=2r。
∴当大圆半径是小圆半径的二倍时,BC与小圆相切。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mbcsjs
2012-11-05 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部
1)AB与AC相等:
先连接OA、OD、OE
∵OD⊥AB;OE⊥AC
又OD=OE;OA为公共边
∴△AOD≌△AOE
∴AD=AE
再连接OB、OC,
∵OB=OC;OD=OE,∠ODB=∠OEC并为直角
∴△ODB≌△OEC
∴DB=EC
∴AD+DB=AE+EC
即:AB=AC
2)连接OA、OD、OE、OB、OC
∵OD⊥AB;OE⊥AC
∴根据勾股定理:AD=AE=BD=CE=4
∴AB=AC=8
连接OA并延长AO交BC于M
两圆半径和=8
∴AM>AB
∴BC与与小圆相加
3)R=2r,假设直线BC与小圆相切,切点为Q;
由(1)作辅助可得AB=AC=BC;
则,△ABC为等边三角形;
连接OQ可得OQ⊥BC;
连接BO可得∠ABO=∠CBO
又∠ABC=60°
∴∠CBO=30°
又△OBC为直角三角形
∴OB=2OQ(注意:OB=R;OQ=r)
故:R=2r,直线BC与小圆相切
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式