为什么二阶导数能判断函数凹凸性?

 我来答
drug2009
推荐于2019-08-25 · TA获得超过1.4万个赞
知道大有可为答主
回答量:6644
采纳率:100%
帮助的人:2768万
展开全部
因为随着凹凸变化,曲线的切线斜率会出现相应的改变。
1在凹最低处或凸最高处,切线斜率为0,即一阶导数为0
2在凹图象最低处左右,一阶导数从最低处左方的>0趋于右方的<0,这一过程二阶导数>0
在凸图象最高处左右,一阶导数从最高处左方的<0趋于右方的>0,这一过程二阶导数<0
因此根据二阶导数可以判断函数的凹凸性质
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式