已知命题p:不等式a2-5a-3≥3成立,命题q:不等式x2+ax+2<0有解;若p为真命题,q为假命题,求a的取值范围
3个回答
展开全部
由命题p: 不等式a2-5a-3≥3 解出: a<=2 或者a≥3
又因为q为假命题,解出 -2√2<=a<=2√2
最后求并集,得: -2√2<=a<=2
又因为q为假命题,解出 -2√2<=a<=2√2
最后求并集,得: -2√2<=a<=2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1 、不等式a²-5a-3≥3成立可得 a≦-1 或 a≧6 。
2、不等式x²+ax+2<0有解不成立,利用判别式可得 -2√2≦a≦2√2。
综上所述,利用数轴判断可得 p为真命题,q为假命题时,-2√2≦a≦-1.
2、不等式x²+ax+2<0有解不成立,利用判别式可得 -2√2≦a≦2√2。
综上所述,利用数轴判断可得 p为真命题,q为假命题时,-2√2≦a≦-1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询