5个回答
展开全部
首先,把方程化简为Z(Z^3-2)=0 ,解得Z=0 或 Z^3=2
所以在实数范围内可解得Z=0或Z=3次根号2
在复数范围内,有两种解法,具体如下:
高中方法:2=2(cos360°+isin360°) (其中i为虚数单位)
把360°三等分,得0°,120°,240°,所以Z^3=2有三个解:
Z1=3次根号2(cos0°+isin0°)
Z2=3次根号2(cos120°+isin120°)
Z1=3次根号2(cos240°+isin240°)
其中Z1就是实数解。
大学解法:Z^3=2,由欧拉公式得Z=e^(ikπ/3),其中k=0,1,2
ok~~
所以在实数范围内可解得Z=0或Z=3次根号2
在复数范围内,有两种解法,具体如下:
高中方法:2=2(cos360°+isin360°) (其中i为虚数单位)
把360°三等分,得0°,120°,240°,所以Z^3=2有三个解:
Z1=3次根号2(cos0°+isin0°)
Z2=3次根号2(cos120°+isin120°)
Z1=3次根号2(cos240°+isin240°)
其中Z1就是实数解。
大学解法:Z^3=2,由欧拉公式得Z=e^(ikπ/3),其中k=0,1,2
ok~~
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高次方程在复数范围内求解,在九一、二年是高中知识,需要用复数的三角形式求解,现在高中不学
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Z^4=2z Z^4-2z=0 Z(Z^3-2)=0 Z=0 或 Z^3-2=0 Z=0 或2的立方根
我不知道是大学还是高中的,反正我初中
我不知道是大学还是高中的,反正我初中
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |