lnx=1/x求解 5
3个回答
展开全部
解方程lnx=1/x
解:由于ln1=0<1;ln2=0.6931>1/2=0.5;故解在区间(1,2)内。这是超越方程,只能用数字解法
求其近似值。为此列表:
x........................lnx..............1/x
1.5................0.4054..........0.6666
1.8................0.5878..........0.5555
1.7................0.5306..........0.5882
1.75..............0.5596..........0.5714
1.78..............0.5766..........0.5618
1.77.............0.5710...........0.5650
1.765...........0.5682...........0.5657
1.764...........0.5676...........0.5669
1.762...........0.5664...........0.5675
1.763...........0.5670............0.5672
1.7635.........0.5673............0.5671
1.76332......0.567198........0.567112
取x=1.76332,绝对误差<0.0001;希望精度再高点,可继续试求。
解:由于ln1=0<1;ln2=0.6931>1/2=0.5;故解在区间(1,2)内。这是超越方程,只能用数字解法
求其近似值。为此列表:
x........................lnx..............1/x
1.5................0.4054..........0.6666
1.8................0.5878..........0.5555
1.7................0.5306..........0.5882
1.75..............0.5596..........0.5714
1.78..............0.5766..........0.5618
1.77.............0.5710...........0.5650
1.765...........0.5682...........0.5657
1.764...........0.5676...........0.5669
1.762...........0.5664...........0.5675
1.763...........0.5670............0.5672
1.7635.........0.5673............0.5671
1.76332......0.567198........0.567112
取x=1.76332,绝对误差<0.0001;希望精度再高点,可继续试求。
展开全部
设f(x)=lnx-1/x,x>0,则
f'(x)=1/x+1/x^>0,
∴f(x)↑,
f(x)=0只有1个根,
f(1.8)≈0.03,f(1.7)≈-0.05,
∴所求的解约为1.8.
f'(x)=1/x+1/x^>0,
∴f(x)↑,
f(x)=0只有1个根,
f(1.8)≈0.03,f(1.7)≈-0.05,
∴所求的解约为1.8.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询