如何学好高中数学
24个回答
展开全部
其实没有太多的话说,因为我也是学生。
我上高中的时候数学特别不好。我的数学应该是从初中就开始不好了。对于数学,我总是抱着一种惧怕的心态。因为不会,所以觉得很丢人。看到一道题的时候,心里就先没了底气。而我以前的数学老师都好严厉,我最后连话都不敢和他们说。
到后来,我遇到一个老老师,那个老师很亲切,他会给我鼓励,即使我做的是最差的。但他会从我所有的方面里找到我的优点,夸奖我,告诉我哪里做的很好,哪里如果怎么怎么做就会更好。这让我在心里相信自己可以做到。
自信心真的是个很奇妙的东西。当我相信自己能做到的时候,我就会想尽一切办法让自己做到。
所以,如果说是教育的话。中国的传统历来是打击式的,这样只能让孩子更没信心。对于教育,我个人认为,鼓励式更能激发学生的热情。
这就是我的看法了,希望对你有用,呵呵~~
我上高中的时候数学特别不好。我的数学应该是从初中就开始不好了。对于数学,我总是抱着一种惧怕的心态。因为不会,所以觉得很丢人。看到一道题的时候,心里就先没了底气。而我以前的数学老师都好严厉,我最后连话都不敢和他们说。
到后来,我遇到一个老老师,那个老师很亲切,他会给我鼓励,即使我做的是最差的。但他会从我所有的方面里找到我的优点,夸奖我,告诉我哪里做的很好,哪里如果怎么怎么做就会更好。这让我在心里相信自己可以做到。
自信心真的是个很奇妙的东西。当我相信自己能做到的时候,我就会想尽一切办法让自己做到。
所以,如果说是教育的话。中国的传统历来是打击式的,这样只能让孩子更没信心。对于教育,我个人认为,鼓励式更能激发学生的热情。
这就是我的看法了,希望对你有用,呵呵~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我高中时数学特别好,而且也遇到了一个很会教学的老师,我很感激她,也希望更多的学生感激你,因为你时一个好老师。
那是我们老师对于教学很简单,调动大家的积极性,一个问题可以有很多方法解决,老师就让大家用不同的方式解,学习好的会思路更加开阔,知识点更熟悉,差的只要能记住一个方法也是一种进步,其实很多人都有表现的欲望,这样可以让大家更好的竞争,更多的思考。
希望你能把自己的学生教好
那是我们老师对于教学很简单,调动大家的积极性,一个问题可以有很多方法解决,老师就让大家用不同的方式解,学习好的会思路更加开阔,知识点更熟悉,差的只要能记住一个方法也是一种进步,其实很多人都有表现的欲望,这样可以让大家更好的竞争,更多的思考。
希望你能把自己的学生教好
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高中英语
个人觉得
难点在于单词难度与词汇量上
平时发得英文报都认真对待
多阅读
提升语感很重要
个人觉得
难点在于单词难度与词汇量上
平时发得英文报都认真对待
多阅读
提升语感很重要
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
学习与男女无关。只要你想学,只要你肯学,就行。上课听明白概念性的知识,适当溜号都无所谓。课下多做点题,买两本练习册认真做。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
学好数学是能力的培养:
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习。在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。保证数量就是①选准一本与教材同步的辅导书或练习册。②做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。④每天保证1小时左右的练习时间。
保证质量就是①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。②落实:不仅要落实思维过程,而且要落实解答过程。③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好。
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习。在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。保证数量就是①选准一本与教材同步的辅导书或练习册。②做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。④每天保证1小时左右的练习时间。
保证质量就是①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。②落实:不仅要落实思维过程,而且要落实解答过程。③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询