已知f(x)为二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,求f(x)的表达式
展开全部
设f(x)=ax²+bx+c
由f(0)=0,得:c=0
所以:f(x)=ax²+bx
f(x+1)=f(x)+x+1
令x=0,得:f(1)=f(0)+0+1=1,即:a+b=1 ①
令x=1,得:f(2)=f(1)+1+1=3,即:4a+2b=3 ②
由①②两式,解得:a=1/2,b=1/2
所以,f(x)=x²/2+x/2
ps:这叫待定系数法,告诉你函数类型,你就把函数解析式直接设出来,然后根据题意去构造方程组,解出未知参数即可
祝你开心!希望能帮到你,如果不懂,请Hi我,祝学习进步!O(∩_∩)O
由f(0)=0,得:c=0
所以:f(x)=ax²+bx
f(x+1)=f(x)+x+1
令x=0,得:f(1)=f(0)+0+1=1,即:a+b=1 ①
令x=1,得:f(2)=f(1)+1+1=3,即:4a+2b=3 ②
由①②两式,解得:a=1/2,b=1/2
所以,f(x)=x²/2+x/2
ps:这叫待定系数法,告诉你函数类型,你就把函数解析式直接设出来,然后根据题意去构造方程组,解出未知参数即可
祝你开心!希望能帮到你,如果不懂,请Hi我,祝学习进步!O(∩_∩)O
追问
可以用某一个常数代入?是哇?这类题都可以这样做吗?我才小学,我自己在看,想归纳题型,整理方法
追答
是的,f(x+1)=f(x)+x+1这个式子是对任何x都成立的,所以,可以用任何一个常数代入,
然后结合已知条件f(0),所以,先代x=0
展开全部
设f(x)=ax^2+bx+c;
当x=-1时,得到f(-1)=0;
又f(0)=0,得到c=0;
一元二次方程f(x)=0由两个解x1=0,x2=-1,
由韦达定理得:x1+x2=-b/a=-1得到a=b;
又x=0时,f(1)=1;f(1)=a+b=1得到a=b=1/2;
故f(x)=(x^2+x)/2
当x=-1时,得到f(-1)=0;
又f(0)=0,得到c=0;
一元二次方程f(x)=0由两个解x1=0,x2=-1,
由韦达定理得:x1+x2=-b/a=-1得到a=b;
又x=0时,f(1)=1;f(1)=a+b=1得到a=b=1/2;
故f(x)=(x^2+x)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=ax^2+bx+c
f(0)=c=0
f(x+1)-f(x)=a(2x+1)+b=2ax+a+b=x+1
2a=1,a+b=1
a=b=1/2
f(x)=(x^2+x)/2
f(0)=c=0
f(x+1)-f(x)=a(2x+1)+b=2ax+a+b=x+1
2a=1,a+b=1
a=b=1/2
f(x)=(x^2+x)/2
更多追问追答
追问
有没有思路,如果下次遇到这样的题目,改怎么下手
追答
根据题目条件,把二元函数设出来。转换为求未知数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x+1)=f(x)+x+1,可得 f(1)=1;
设:f(x)=ax^2+b x+c, f(0)=0, 所以: c=0, a+b=1,
代入得:a=b=1/2;
设:f(x)=ax^2+b x+c, f(0)=0, 所以: c=0, a+b=1,
代入得:a=b=1/2;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设f(x)=ax2+bx+c
f(0)=0 c=0
f(x+1)=a(x+1)2+b(x+1)=ax2+bx+x+1
由多项式的相等 a=0.5,b=0.5
f(0)=0 c=0
f(x+1)=a(x+1)2+b(x+1)=ax2+bx+x+1
由多项式的相等 a=0.5,b=0.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询