三角函数诱导公式中角度为钝角那象限就不对了啊

 我来答
WYZZWB2011407d2e
高能答主

2018-08-05 · 最想被夸「你懂的真多」
知道大有可为答主
回答量:5.2万
采纳率:77%
帮助的人:7516万
展开全部

诱导公式是指三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数的公式。 诱导公式有六组共54个。

常用的诱导公式有以下六组:

终边相同的角的同一三角函数的值相等。

π+α的三角函数值与α的三角函数值之间的关系。

设α为任意角,弧度制下的角的表示:

sin(π+α)=-sinα.

cos(π+α)=-cosα.

tan(π+α)=tanα.

cot(π+α)=cotα.

sec(π+α)=-secα.

csc(π+α)=-cscα.

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα.

cos(-α)=cosα.

tan(-α)=-tanα.

cot(-α)=-cotα.

sec(-α)=secα.

csc (-α)=-cscα.

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

弧度制下的角的表示:

sin(π-α)=sinα.

cos(π-α)=-cosα.

tan(π-α)=-tanα.

cot(π-α)=-cotα.

sec(π-α)=-secα.

csc(π-α)=cscα.

π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)⒈

π/2+α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(π/2+α)=cosα.

cos(π/2+α)=—sinα.

tan(π/2+α)=-cotα.

cot(π/2+α)=-tanα.

sec(π/2+α)=-cscα.

csc(π/2+α)=secα.

⒉ π/2-α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(π/2-α)=cosα.

cos(π/2-α)=sinα.

tan(π/2-α)=cotα.

cot(π/2-α)=tanα.

sec(π/2-α)=cscα.

csc(π/2-α)=secα.

⒊ 3π/2+α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(3π/2+α)=-cosα.

cos(3π/2+α)=sinα.

tan(3π/2+α)=-cotα.

cot(3π/2+α)=-tanα.

sec(3π/2+α)=cscα.

csc(3π/2+α)=-secα.

⒋ 3π/2-α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(3π/2-α)=-cosα.

cos(3π/2-α)=-sinα.

tan(3π/2-α)=cotα.

cot(3π/2-α)=tanα.

sec(3π/2-α)=-cscα.

csc(3π/2-α)=-secα.

奇变偶不变,符号看象限。

注:奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

这十二字口诀的意思就是说:

第一象限内任何一个角的三角函数值都是“+”;

第二象限内只有正弦和余割是“+”,其余全部是“-”;

第三象限内只有正切和余切是“+”,其余函数是“-”;

第四象限内只有正割和余弦是“+”,其余全部是“-”。

公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。

上面这些诱导公式可以概括为:对于kπ/2±α(k∈Z)的三角函数值,

当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα、

希望我能帮助你解疑释惑。

善解人意一
高粉答主

2018-08-05 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.6万
采纳率:84%
帮助的人:7427万
展开全部


待续

更多追问追答
追答
你的问题是这样吗?
根据你的回复,我选择解答方式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式