展开全部
I=AA^(-1)
=I+ααT/x-ααT-ααTααT/x
=I+ααT/x-ααT-α(αTα)αT/x
=I+ααT/x-ααT-α(2x^2)αT/x
=I+ααT/x-ααT-α(2x)αT
=I+ααT/x-ααT-(2x)ααT
=I+(1/x-1-2x)ααT
因此(1/x-1-2x)ααT=0(零矩阵)
则1/x-1-2x=0
1-x-2x^2=0
(1-2x)(1+x)=0
解得x=-1(舍去1/2,因为x<0)
=I+ααT/x-ααT-ααTααT/x
=I+ααT/x-ααT-α(αTα)αT/x
=I+ααT/x-ααT-α(2x^2)αT/x
=I+ααT/x-ααT-α(2x)αT
=I+ααT/x-ααT-(2x)ααT
=I+(1/x-1-2x)ααT
因此(1/x-1-2x)ααT=0(零矩阵)
则1/x-1-2x=0
1-x-2x^2=0
(1-2x)(1+x)=0
解得x=-1(舍去1/2,因为x<0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询