如图,△ABC内接于圆,D是弧BC的中点,DA交BC于点E,已知AB=6,AC=4,DE=2,求AE、BD、BC的长。
3个回答
展开全部
你好!
∵D为弧BC中点
∴弧BD=弧CD
∠BAD=∠CAD
又∵∠D=∠C(同弧所对圆周角)
∴△ABD∽△AEC
AB/AE=AD/AC
6/AE = (AE+2)/4
解得 AE = 4
∵∠CBD=∠CAD=∠BAD
∠D=∠D
∴△ABD∽△BED
AB/BE = BD/ED=AD/BD
6/BE = BD/2 = 6/BD
解得 BE=BD= 2√3
由△BED∽△AEC得
BD/AC=ED/EC
2√3 / 4 = 2 / EC
EC = 4√3 /3
BC = BE+EC = 10√3 /3
答案:AE=4,BD=2√3,BC=10√3 /3
∵D为弧BC中点
∴弧BD=弧CD
∠BAD=∠CAD
又∵∠D=∠C(同弧所对圆周角)
∴△ABD∽△AEC
AB/AE=AD/AC
6/AE = (AE+2)/4
解得 AE = 4
∵∠CBD=∠CAD=∠BAD
∠D=∠D
∴△ABD∽△BED
AB/BE = BD/ED=AD/BD
6/BE = BD/2 = 6/BD
解得 BE=BD= 2√3
由△BED∽△AEC得
BD/AC=ED/EC
2√3 / 4 = 2 / EC
EC = 4√3 /3
BC = BE+EC = 10√3 /3
答案:AE=4,BD=2√3,BC=10√3 /3
展开全部
连接DC
∵D是弧BC的中点,
∴弧BD=弧DC
∴BD=CD,∠BAD=∠CAD
∵∠ABE=∠ADC
∴△ABE∽△ACD
∴AB:AD=AE:AC
∴6:(AE+2)=AE:4
∴AE²+2AE-24=0
解得AE=4
∵∠BAD=∠CAD=∠DBC
∠BDE=∠ADB
∴△BDE∽△DBA
∴BD:AD=DE:BD
BD²=24
BD=2倍根号6
又△BDE∽△AEC
∴BE:AE=BD:AC=DE:EC
∴BE=AE×BD/AC=4×2倍根号6/4=2倍根号6
DE:EC=BD:AE
∴EC=DE×AE/BD=2×4/2倍根号6=2倍根号6/3
BC=2倍根号6+2倍根号6/3=8倍根号6/3
∵D是弧BC的中点,
∴弧BD=弧DC
∴BD=CD,∠BAD=∠CAD
∵∠ABE=∠ADC
∴△ABE∽△ACD
∴AB:AD=AE:AC
∴6:(AE+2)=AE:4
∴AE²+2AE-24=0
解得AE=4
∵∠BAD=∠CAD=∠DBC
∠BDE=∠ADB
∴△BDE∽△DBA
∴BD:AD=DE:BD
BD²=24
BD=2倍根号6
又△BDE∽△AEC
∴BE:AE=BD:AC=DE:EC
∴BE=AE×BD/AC=4×2倍根号6/4=2倍根号6
DE:EC=BD:AE
∴EC=DE×AE/BD=2×4/2倍根号6=2倍根号6/3
BC=2倍根号6+2倍根号6/3=8倍根号6/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询