数学初二函数学习方法和知识要点总结

 我来答
0花草茶蜜0
推荐于2016-07-16 · TA获得超过1107个赞
知道答主
回答量:100
采纳率:100%
帮助的人:98.1万
展开全部
  
知识点总结
一.函数的相关概念:
1.变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,保持不变的量叫做常量。
注意:变量和常量往往是相对而言的,在不同研究过程中,常量和变量的身份是可以相互转换的.
在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
说明:函数体现的是一个变化的过程,在这一变化过程中,要着重把握以下三点:
(1)只能有两个变量.
(2)一个变量的数值随另一个变量的数值变化而变化.
(3)对于自变量的每一个确定的值,函数都有唯一的值与之对应.
二.函数的表示方法和函数表达式的确定:
函数关系的表示方法有三种:
1..解析法:两个变量之间的关系,有时可以用一个含有这两个变量的等式表示,这种表示方法叫做解析法.用解析法表示一个函数关系时,因变量y放在等式的左边,自变量y的代数式放在右边,其实质是用x的代数式表示y;
注意:解析法简单明了,能准确地反映整个变化过程中自变量与因变量的关系,但不直观,且有的函数关系不一定能用解析法表示出来.
2.列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系的方法叫列表法;
注意:列表法优点是一目了然,使用方便,但其列出的对应值是有限的,而且从表中不易看出自变量和函数之间的对应规律。
3..图象法:用图象表示函数关系的方法叫做图象法.图象法形象直观,是研究函数的一种很重要的方法。
三.函数(或自变量)值、函数自变量的取值范围

2.函数求值的几种形式:
(1)当函数是用函数表达式表示时,示函数的值,就是求代数式的值;
(2)当已知函数值及表达式时,赌注相应自变量的值时,其实质就是解方程;
(3)当给定函数值的取值范围,求相应的自变量的取值范围时,其实质就是解不等式(组)。
3..函数自变量的取值范围是指使函数有意义的自变量的取值的全体.求自变量的取值范围通常从两个方面考虑:一是要使函数的解析式有意义;二是符合客观实际.下面给出一些简单函数解析式中自变量范围的确定方法.
(1)当函数的解析式是整式时,自变量取任意实数(即全体实数);
(2)当函数的解析式是分式时,自变量取值是使分母不为零的任意实数;
(3)当函数的解析式是开平方的无理式时,自变量取值是使被开方的式子为非负的实数;
(4)当函数解析式中自变量出现在零次幂或负整数次幂的底数中时,自变量取值是使底数不为零的实数。
说明:当函数表达式表示实际问题或几何问题时,自变量取值范围除应使函数表达式有意义外,还必须符合实际意义或几何意义。
在一个函数关系式中,如果同时有几种代数式时,函数自变量取值范围应是各种代数式中自变量取值范围的公共部分。
四.函数的图象
1.函数图象的画法
确定了函数解析式,要画出函数的图象。一般分为以下三个步骤:
(1)列表:取自变量的一些值,计算出对应的函数值,由这一系列的对应值得到一系列的有序实数对;
(2)描点:在直角坐标系中,描出这些有序实数对的对应点;
(3)连线:用平滑的曲线依次把这些点连起来,即可得到这个函数的图象。
这些是我们老师讲过的复习提纲,希望对你有所帮助!

常见考法:  (1)考查函数的概念;
(2)求函数值或自变量的取值范围。
三里店村
2012-11-08 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.1万
采纳率:85%
帮助的人:2847万
展开全部
课本上讲的定理,你可以自己试着自己去推理。这样不但提高自己的证明能力,也加深对公式的理解。还有就是大量练习题目。基本上每课之后都要做课余练习的题目(不包括老师的作业)。数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开的,因此.良好的数学学习习惯包括:听讲、阅读、探究、作业.听讲:应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记.每堂课结束以后应深思一下进行归纳,做到一课一得.阅读:阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维.探究:要学会思考,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律.作业:要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学.总之,在学习数学的过程中,要认识到数学的重要性,充分发挥自己的主观能动性,从小的细节注意起,养成良好的数学学习习惯,进而培养思考问题、分析问题和解决问题的能力,最终把数学学好.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
李宇轩Brian
2012-11-07 · TA获得超过1972个赞
知道答主
回答量:207
采纳率:0%
帮助的人:65万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式