3个回答
展开全部
∫[1/(1+x^4)]dx
= 1/2∫[(x^2+1)-(x^2-1)]/(1+x^4)dx
= 1/2 {∫(x^2+1)/(1+x^4) dx - ∫(x^2-1)/(1+x^4)dx }
= 1/2 {∫(1+1/x^2)dx /(x^2+1/x^2) - ∫(1-1/x^2)dx/(x^2+1/x^2)}
= 1/2 {∫d(x-1/x) /[(x-1/x)^2+2] - ∫d(x+1/x) /[(x+1/x)^2 -2] }
= 1/2 { 1/√2 ∫d[(x-1/x) /√2] /{[(x-1/x)/√2]^2+1} - ∫d(x+1/x) /[(x+1/x)^2 -2] }
= 1/2 { 1/√2 ∫d[(x-1/x) /√2] /{[(x-1/x)/√2]^2+1}
- 1/2√2 ∫d[(x+1/x) /√2] [ 1/{[(x+1/x)/√2] -1} - 1/{[(x+1/x)/√2] +1 }]
= √2/4*arctan[(x-1/x)/√2] - √2/8*ln|(x^2-x√2+1)/(x^2+x√2 +1)| + C
【或者,使用待定系数法,但较繁琐:】
∫[1/(1+x^4)]dx
=∫ 1/[(x^2-x√2+1)*(x^2+x√2 +1)]dx
=∫ { [ax+b]/[(x^2-x√2+1) + [cx+d]/(x^2+x√2 +1)] }dx
= 1/2∫[(x^2+1)-(x^2-1)]/(1+x^4)dx
= 1/2 {∫(x^2+1)/(1+x^4) dx - ∫(x^2-1)/(1+x^4)dx }
= 1/2 {∫(1+1/x^2)dx /(x^2+1/x^2) - ∫(1-1/x^2)dx/(x^2+1/x^2)}
= 1/2 {∫d(x-1/x) /[(x-1/x)^2+2] - ∫d(x+1/x) /[(x+1/x)^2 -2] }
= 1/2 { 1/√2 ∫d[(x-1/x) /√2] /{[(x-1/x)/√2]^2+1} - ∫d(x+1/x) /[(x+1/x)^2 -2] }
= 1/2 { 1/√2 ∫d[(x-1/x) /√2] /{[(x-1/x)/√2]^2+1}
- 1/2√2 ∫d[(x+1/x) /√2] [ 1/{[(x+1/x)/√2] -1} - 1/{[(x+1/x)/√2] +1 }]
= √2/4*arctan[(x-1/x)/√2] - √2/8*ln|(x^2-x√2+1)/(x^2+x√2 +1)| + C
【或者,使用待定系数法,但较繁琐:】
∫[1/(1+x^4)]dx
=∫ 1/[(x^2-x√2+1)*(x^2+x√2 +1)]dx
=∫ { [ax+b]/[(x^2-x√2+1) + [cx+d]/(x^2+x√2 +1)] }dx
展开全部
第三个等号错了
追问
那请问根号下tant分之一该怎么积分?
追答
无理化有理,令根号下tan分之一为变量u就又回去了,这题不该这样解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1/2)*∫1/√(tant)dt ≠ √(tant)+C
正确的解法应为:
原式=(1/2)*[∫(1+x^2)/(1+x^4)dx+∫(1-x^2)/(1+x^4)dx]
=(1/2)*[∫(1/x^2+1)/(1/x^2+x^2)dx+∫(1/x^2-1)/(1/x^2+x^2)dx]
=(1/2)*{∫d(x-1/x)/[(x-1/x)^2+2]-∫d(x+1/x)/[(x+1/x)^2-2]}
=(1/2)*{(1/√2)*arctan[(x-1/x)/√2]-(1/2√2)*ln[(x+1/x-√2)/(x+1/x+√2)]}+C
=(√2/4)*arctan[(x-1/x)/√2]-(√2/8)*ln[(x+1/x-√2)/(x+1/x+√2)]+C,其中C是任意常数
正确的解法应为:
原式=(1/2)*[∫(1+x^2)/(1+x^4)dx+∫(1-x^2)/(1+x^4)dx]
=(1/2)*[∫(1/x^2+1)/(1/x^2+x^2)dx+∫(1/x^2-1)/(1/x^2+x^2)dx]
=(1/2)*{∫d(x-1/x)/[(x-1/x)^2+2]-∫d(x+1/x)/[(x+1/x)^2-2]}
=(1/2)*{(1/√2)*arctan[(x-1/x)/√2]-(1/2√2)*ln[(x+1/x-√2)/(x+1/x+√2)]}+C
=(√2/4)*arctan[(x-1/x)/√2]-(√2/8)*ln[(x+1/x-√2)/(x+1/x+√2)]+C,其中C是任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询