己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D

DE⊥AB于点E,且交AC于点P,连接AD。若圆o的半径为5,DE=4,求四边形ABCD的面积... DE⊥AB于点E,且交AC于点P,连接AD。

若圆o的半径为5,DE=4,求四边形ABCD 的面积
展开
百度网友7062715
2012-11-06 · TA获得超过369个赞
知道答主
回答量:111
采纳率:0%
帮助的人:153万
展开全部
四边形ABCD的面积等于△ABC+△BCD
在圆内,△ABC和△ABD为Rt△
又因为DE⊥AB
根据射影定理, DE^2=AE*BE=16 AE+BE=10
所以解得AE=2,BE=8
又根据勾股定理得 BD=4√5,AD=2√5
又因为∠DAC=∠DBC=∠DBA
∠ADB=∠ADB

所以△ABD∽△FAD
所以AD/DB=DF/AD
所以DF=√5,则FB=3√5
同理可得FB/BC=AB/DB
所以BC=6
D在∠CBA的角平分线上,所以D到AB和BC的距离相等为4
所以 △BCD的面积为12
又△ABC的面积为20
所以四边形ABCD的面积等于32
来自:求助得到的回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式