六位数()2016()能被99整除,求这个六位数

 我来答
甬江观点
高粉答主

2020-01-27 · 理性看世界,从容往前行
甬江观点
采纳数:4418 获赞数:153456

向TA提问 私信TA
展开全部
被99整除就是被9和11整除。
设a2016b被9和11整除,
a+2+0+1+6+b=9+a+b被9整除,则a+b被9整除,a不等于0,所以a+b=9或18
另外被11整除,(a+0+6)-(2+1+b)=a-b+3被11整除,a-b+3=0或11
若a-b+3=11,则只有a=9,b=1,a+b=10不成立。
若a-b+3=0,b=a+3, a+b=2a+3
若a+b=9,则2a+3=9,a=3,b=6;若a+b=18,a无整数解,
所以六位数是320166
买昭懿007
2020-01-27 · 知道合伙人教育行家
买昭懿007
知道合伙人教育行家
采纳数:35959 获赞数:160769
毕业于山东工业大学机械制造专业 先后从事工模具制作、设备大修、设备安装、生产调度等工作

向TA提问 私信TA
展开全部
99=9×11
∵ a2016b能被9整除
∴ 则a+2+0+1+6+b能被9整除
∴ a+b+9能被9整除
∴ a+b=9或a+b=18 。。。。。。(1)
∵ 11的倍数的性质,时是奇数位数字之和与偶数位数字之和的差是11的倍数
∴(a+0+6)-(2+1+b)=a+3-b=0或11
∴ a-b=-3,或a-b=8.。。。。。。。。(2)
∵ a+b=18时,a=b=9,不符合(2)
∴ a+b=9。。。。。。(3)
由(2)和(3)得:
a=3,b=6
∴ 这个六位数是:
320166
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
段智4Z
2020-01-27 · TA获得超过1969个赞
知道小有建树答主
回答量:2501
采纳率:87%
帮助的人:138万
展开全部
被99整除,即被9整除,此六位数之和被9整除,首位和末位数有(1,8),(2,7),(3,6),(4,5),(5,4),(6,3),(7,2),(8,1),8种可能,通过排除法,只有(3,6),唯一答案,此六位数为320166,
320166÷99=3234
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2020-01-27
展开全部
int main()
{
for(int i=1;i<=9;i++){
for(int j=0;j<=9;j++){
if(!((i*100000+2016*10+j)%99)){
printf("%d",i*100000+2016*10+j);
}
}
}
return 0;
}
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
NEUQHyson
2020-01-27 · TA获得超过4346个赞
知道小有建树答主
回答量:897
采纳率:100%
帮助的人:271万
展开全部
能被99整除的自然数特征:1、能同时被9和11整除。2、两位一分隔,然后求和,和能被99整除。
也就是要同时满足:
1、能被11整除的数:一个整数由右边个位向左边数,奇位上的数字之和与偶位上的数字之和的差如果能被11整除(包括0),则这个数就能被11整除,这种方法叫“奇偶位差法”。
2、能被9整除的数:一个数的各个数位上的数字之和能被9整除,那么这个数就能被9整除。
分析:六位数X2016Y能被99整除,首先满足(X+2+0+1+6+Y)能被9整除,且(Y+1+2)-(6+0+X)能被11整除。也就是(X+Y)是9的倍数,这里只可能为9或者18。(Y+1+2)-(6+0+X)=(Y-3-X)不可能是11的倍数只能是0。既然题目限定六位数,则X取值(1-9),Y取值(0-9)。则确定方程组:X+Y =9,Y-3-X=0 。解方程 X=3,Y=6。
验证第二个条件:带入六位数 320166,两位一分隔,然后求和为32+1+66=99,满足条件。
最终这个六位数就是320166
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式