求下列函数的条件极值

第二问第二问拜托了!... 第二问第二问 拜托了! 展开
 我来答
crs0723
2020-04-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4491万
展开全部
第一步:计算f(x,y)在区域D内部的最值,即x>0,y>0,x+y<2π
f(x,y)=sinx+siny-sin(x+y)
fx'=cosx-cos(x+y)=0
fy'=cosy-cos(x+y)=0
驻点:(2π/3,2π/3),此时
A=fxx''=-sinx+sin(x+y)=-√3,B=fxy''=sin(x+y)=-√3/2,C=fyy''=-siny+sin(x+y)=-√3
因为B^2-AC=-9/4<0,所以(2π/3,2π/3)是极大值点
f(x,y)在区域D内部最大值为f(2π/3,2π/3)=(3√3)/2,最小值不存在
第二步:计算f(x,y)在区域D边界上的最值,即x=0,y=0,x+y=2π
当x=0时,f(x,y)=0+siny-sin(0+y)=0
当y=0时,f(x,y)=sinx+0-sin(x+0)=0
当x+y=2π时,f(x,y)=sinx+sin(2π-x)-sin(2π)=0
所以f(x,y)在区域D边界上恒为0
第三步:综上所述,f(x,y)在区域D上的最大值为(3√3)/2,最小值为0
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
情书简单不简爱
2020-04-01 · 超过35用户采纳过TA的回答
知道答主
回答量:192
采纳率:55%
帮助的人:31.6万
展开全部
你第一问是怎么做的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式