关于分段函数,变限积分,不定积分,原函数的问题
关于分段函数,变限积分,不定积分,原函数的问题我这里整理了一下自己的思路。有如下结论:一个分段函数f(x),存在跳跃间断点,即在区间内不连续也不可导。对其进行积分,可以变...
关于分段函数,变限积分,不定积分,原函数的问题我这里整理了一下自己的思路。有如下结论:一个分段函数f(x),存在跳跃间断点,即在区间内不连续也不可导。
对其进行积分,可以变成一个变限积分,记为g(x),这个变限积分存在尖点,也就是f(x)的跳跃间断点,所以g(x)在其区间内连续,但是在其尖点处不可导。并且可以写成f(x)的不定积分等于g(x)加上常数。
此时再对g(x)求积分,可以得到一个G(x),此G(x)是g(x)的原函数,区间上处处连续且可导。而且g(x)的不定积分可以写成G(x)加常数。
拥有震荡间断点的函数可以看成是一个变限积分。拥有震荡间断点的函数在某一点是不可导的,没有定义的,例如xsin(1/x)。
请仔细帮我看一下,看看有没有理论上的错误,有的话请指出,万分感谢! 展开
对其进行积分,可以变成一个变限积分,记为g(x),这个变限积分存在尖点,也就是f(x)的跳跃间断点,所以g(x)在其区间内连续,但是在其尖点处不可导。并且可以写成f(x)的不定积分等于g(x)加上常数。
此时再对g(x)求积分,可以得到一个G(x),此G(x)是g(x)的原函数,区间上处处连续且可导。而且g(x)的不定积分可以写成G(x)加常数。
拥有震荡间断点的函数可以看成是一个变限积分。拥有震荡间断点的函数在某一点是不可导的,没有定义的,例如xsin(1/x)。
请仔细帮我看一下,看看有没有理论上的错误,有的话请指出,万分感谢! 展开
1个回答
展开全部
更多追问追答
追问
谢谢你,你说的第一个问题我明白了,确实是。但是第二个问题,如果补充在震荡间断点处f(0)=0,那么在零这个点左右导数的极限等于此点的函数值,这样根据连续的定义,x=0这个点不就连续了吗?这样不就不符合间断函数的性质了嘛?
追答
振荡间断点是至少有一侧极限不存在的,极限不存在,和它在那个间断点处的值没有关系,即便补充定义还是极限还是不存在,还是间断点
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询