t方加t减去2等于零求详细过程
可以用十字相乘法解。这个方程有两个根,一个是-2,一个是1。
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程[1] 。一元二次方程经过整理都可化成一般形式(或标准形式)ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
开平方法
(1)形如
或
的一元二次方程可采用直接开平方法解一元二次方程 [5] [6] 。
(2)如果方程化成
的形式,那么可得
。
(3)如果方程能化成
的形式,那么
,进而得出方程的根。
(4)注意:
①等号左边是一个数的平方的形式而等号右边是一个常数。
③方法是根据平方根的意义开平方。
缺点是,如果右边的常数比较大,则不容易一下看出平方根,必须用笔算开平方法。
配方法
将一元二次方程配成
的形式,再利用直接开平方法求解的方
图1配方法解一元二次方程实例
法[6] [5] 。
(1)用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(2)配方法的理论依据是完全平方公式
(3)配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
求根公式
(1)用求根公式法解一元二次方程的一般步骤为:
①把方程化成一般形式
,确定
的值(注意符号);
②求出判别式
的值,判断根的情况;
③在
(注:此处△读“德尔塔”)的前提下,把
的值代入公式
进行计算,求出方程的根[5] [6] 。
(2)推导过程
一元二次方程的推导如右图2。
注意:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式:
,应该理解为“如果存在的话,两个自乘后为的数当中任何一个”。在某些数域中,有些数值没有平方根。如在实数范围内,负数是没有平方根的。
因式分解
因式分解法即利用因式分解求出方程的解的方法[5] [5] 。
因式分解法解一元二次方程的一般步骤如下:
①移项,使方程的右边化为零;
②将方程的左边转化为两个一元一次方程的乘积;
③令每个因式分别为零;
④括号中
,它们的根就都是原方程的根。
希望我能帮助你解疑释惑。
2024-10-13 广告