大一高数一阶线性微分方程求解
2个回答
展开全部
贝努力方程。设 z = y^(1-4) = 1/y^3, 则 y = z^(-1/3), 代入方程得
(-1/3)z^(-4/3)z' + (1/3)xz^(-1/3) = (1/3)xz^(-4/3), 即 z' - xz = -x,
z = e^(∫xdx)[∫-xe^(-∫xdx)dx + C] = e^(x^2/2)[∫-xe^(-x^2/2)dx + C]
= e^(x^2/2)[∫e^(-x^2/2)d(-x^2/2) + C]
= e^(x^2/2)[e^(-x^2/2) + C] = 1 + Ce^(x^2/2).
得 y^3[1 + Ce^(x^2/2)] = 1
(-1/3)z^(-4/3)z' + (1/3)xz^(-1/3) = (1/3)xz^(-4/3), 即 z' - xz = -x,
z = e^(∫xdx)[∫-xe^(-∫xdx)dx + C] = e^(x^2/2)[∫-xe^(-x^2/2)dx + C]
= e^(x^2/2)[∫e^(-x^2/2)d(-x^2/2) + C]
= e^(x^2/2)[e^(-x^2/2) + C] = 1 + Ce^(x^2/2).
得 y^3[1 + Ce^(x^2/2)] = 1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询