2个回答
展开全部
使用裂项法:
An = 1/[n(n+1)] = 1/n - 1/(n+1)
那么,
∑An = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + …… + [1/(n-1) - 1/n] + [1/n - 1/(n+1)]
= 1 - 1/(n+1)
所以,这道题求的极限就等于:
=lim [1 - 1/(n+1)]
= 1 - lim 1/(n+1)
= 1 - 0
= 1
An = 1/[n(n+1)] = 1/n - 1/(n+1)
那么,
∑An = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + …… + [1/(n-1) - 1/n] + [1/n - 1/(n+1)]
= 1 - 1/(n+1)
所以,这道题求的极限就等于:
=lim [1 - 1/(n+1)]
= 1 - lim 1/(n+1)
= 1 - 0
= 1
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |