已知a>0,函数f(x)=x^3-ax是区间【1,+∞)上的单调函数,求实数a的取值范围(求解题思路和步骤)
展开全部
f(x)=x^3-ax是区间【1,+∞)上的单调函数, 1.为增函数时,所以导函数在【1,+∞)大于等于0恒成立 3x^2-a>=0 a<(3x^2)的最小值 所以a≤3 已知a>0 0<a≤3 2.为减函数时,所以导函数在【1,+∞)≤0恒成立 3x^2-a≤0不成立,所以有f(x)=x^3-ax是区间【1,+∞)上为增函数,0<a≤3。不会再问欢迎采纳 ,你说的是用单调性的定义去求解,f(x)可以为增也可为减,(x1-x2)(x1^2+x1x2+x2^2-a)<0 是单调性为减的那种情况
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询