怎么求参数方程二阶导数

 我来答
教育小百科达人
2019-04-08 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

dx、dy表示微分,可以拆开,对于参数方程,x=f(t),y=g(t),

对于参数方程,先求微分:dx=f'(t)dt,dy=g'(t)dt,

dy/dx=g'(t)/f'(t),

而如果先消去参数,t=fˉ¹(x),y=g(fˉ¹(x))

dy/dx=g'(fˉ¹(x))*fˉ¹'(x)=g'(fˉ¹(x))/f'(t)=g'(t)/f'(t),是一样的。

二阶导数,注意是d²y/dx²,把dy/dx看成是新的“y”,x还是等于f(t),

所以应该这样:d(dy/dx)=[g'(t)/f'(t)]'dt=[g''(t)f'(t)-g'(t)f''(t)]/f'(t)² dt

dx=f'(t)dt

d²y/dx²=d(dy/dx)/dx=[g''(t)f'(t)-g'(t)f''(t)]/f'(t)³

函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性

扩展资料:

如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:

f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点

参考资料来源:百度百科——二阶导数

丘冷萱Ad
推荐于2017-11-25 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3963万
展开全部
x=g(t)
y=h(t)
则一阶导数:dy/dx=h'(t)/g'(t)
二阶导数:d²y/dx²=d[h'(t)/g'(t)]/dx 函数中只有变量t,t看作中是变量
={d[h'(t)/g'(t)]/dt}*(dt/dx)
={d[h'(t)/g'(t)]/dt} / (dx/dt)
={d[h'(t)/g'(t)]/dt} / g'(t)

用语言描述就是:d²y/dx²就是用一阶导数的结果对t求导,然后除以g'(t)。

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
弈轩
2018-08-04 · 知道合伙人教育行家
弈轩
知道合伙人教育行家
采纳数:1029 获赞数:7544
电子设计大赛三等奖 优秀毕业生

向TA提问 私信TA
展开全部

图中式子就是求y关于x的二阶导,因为y和x又可以有参数方程 y(t)和x(t)确定,那么y''即y'关于x的变化率就可以换为:“y'关于t的变化率”与“x关于t的变化率”之比了。这是微分常用的替换方法,要熟练掌握!

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式