问一道高数题,关于函数的可导。

题目和答案就是这样。但我想问的是,第二问,假如我直接对函数求导,不是得出和第三问一样的式子?那么这样的话,n是不是也应该是大于等于3而不是2呢?或者说,我把原函数的式子求... 题目和答案就是这样。
但我想问的是,第二问,假如我直接对函数求导,不是得出和第三问一样的式子?那么这样的话,n是不是也应该是大于等于3而不是2呢?
或者说,我把原函数的式子求导,得出第三问的式子,证明一个函数可导,就是左右分别可导且相等嘛,这样左右求极限,x趋向于0时,不也说明了n要大于等于3?
好混乱啊,求解。
展开
chinasunsunsun
2012-11-08 · TA获得超过1.6万个赞
知道大有可为答主
回答量:5494
采纳率:75%
帮助的人:3613万
展开全部
答案是错的,你哪找的答案。。。
(1)连续,那么需要极限=函数值
即lim x->0 x^n sin(1/x)=0
因为-1<=sin(1/x)<=1
是有界量
只需要x^n->0即可,所以只需要n>0即可,无穷小乘有界量->0
(2)x=0点可导,即左右导数极限相等且有界
即f'(0)=lim x->0 [f(x)-f(0)]/(x-0)=lim x->0 x^(n-1)sin(1/x)
要使得此极限有意义,只能有x^(n-1)是无穷小,即n>1
且f'(0)=0
(3)导数连续和在那点可导是不一样的
原因是导数在x0处存在表示
lim x->x0- [f(x)-f(x0)]/(x-x0)=lim x->x0+ [f(x)-f(x0)]/(x-x0) 有界
导数在x0处连续表示
lim x->x0 f'(x)=f'(0)
是不一样的定义
此题就是
f'(x)=nx^(n-1)sin(1/x)-x^(n-2)cos(1/x)
为了使lim x->x0 f'(x)=f'(0)=0
必须有n>1且n>2
所以即n>2
小小不点儿百货
2012-11-19 · TA获得超过1743个赞
知道小有建树答主
回答量:607
采纳率:0%
帮助的人:569万
展开全部
你好,我来回答你的问题吧。你的想法是不对的,我告诉你这是为什么,你想想看。首先,你要区分两个不同的说法,一个是函数在某一点可导,另一个是函数在定义域内或某一区间内可导。这两种说法是不同的。如果题目说在某一点可导,那么在定义域内的其他点是否可导呢?其实我们是不知道的,对吗?一个函数,只有可导的前提下,我们才能利用导数公式去求导,如果不可导,那么是不能直接求导的。你的错误就在这里。第二问只说是在0点可导,并没告诉你在定义域内其他各点也可导,而你的做法如果是直接求导,那就错了,因为题目没告诉你该函数在定义域内其他各点的也可导,所以如果你直接求导,其实就是在承认一个假设的基础上来做题的,这个假设就是这个函数在整个定义域上都可导,所以才能够直接对他求导,这与题干的意思就不一样了。你想想是不是这个道理?所以,注意一下,向第二问这样的情况,都是用定义来求在某一点可导的,好好理解一下,以后按答案的方法做题即可。再说说第三问,告诉你导数连续,注意这种表述方式,是导数连续,这其实就是在隐含着告诉你一件事,就是这个函数可导,如果不可导,怎么会有函数的导数呢,并且导数还是连续的,你想想是不是?相通这一点,你就会明白,其实条件中已经明确说明了函数是可导的,因为函数有导数啊,对不对?所以,答案才可以对这个函数直接求导。你把题干第二问和第三问好好比较比较区别,注意不同的说法下做法的不同。有不懂的可以追问我!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
曾未想过要放弃
2012-11-08 · 超过11用户采纳过TA的回答
知道答主
回答量:83
采纳率:0%
帮助的人:31.2万
展开全部
你直接求
就是说明 函数可导 推出 导函数
但你没有证明函数是否可导(有间断点)
有间断点的函数 你要证明函数是不是连续和可导
题目就是一步一步的递进
第一步 函数连续性
第二部 是否可导
第三步 导函数的连续性
这三的关系不要混淆 谁推谁 要清楚 贵阳家教
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
光之共和国765
2012-11-12
知道答主
回答量:19
采纳率:0%
帮助的人:21.5万
展开全部

这是清华大学出版社数学分析1的一道例题,解答如上图。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式