用分部积分法求定积分?
3个回答
展开全部
(4)
∫(0->1) te^(-2t) dt
=-(1/2)∫(0->1) t de^(-2t)
=-(1/2)[ t.e^(-2t)]|(0->1)+(1/2)∫(0->1) e^(-2t) dt
=-(1/2)e^(-2) -(1/4)[ e^(-2t)]|(0->1)
=-(1/2)e^(-2) -(1/4)[ e^(-2) -1 ]
=1/4 - (3/4)e^(-2)
(2)
∫(0->π/2) xcos(x/2) dx
=2∫(0->π/2) x dsin(x/2)
=2[x.sin(x/2)]|(0->π/2) -2 ∫(0->π/2) sin(x/2) dx
=2(π/2)(√2/2) +4[cos(x/2)]|(0->π/2)
=(√2/2)π +4 ( √2/2 -1 )
=(√2/2)π +2√2 -4
∫(0->1) te^(-2t) dt
=-(1/2)∫(0->1) t de^(-2t)
=-(1/2)[ t.e^(-2t)]|(0->1)+(1/2)∫(0->1) e^(-2t) dt
=-(1/2)e^(-2) -(1/4)[ e^(-2t)]|(0->1)
=-(1/2)e^(-2) -(1/4)[ e^(-2) -1 ]
=1/4 - (3/4)e^(-2)
(2)
∫(0->π/2) xcos(x/2) dx
=2∫(0->π/2) x dsin(x/2)
=2[x.sin(x/2)]|(0->π/2) -2 ∫(0->π/2) sin(x/2) dx
=2(π/2)(√2/2) +4[cos(x/2)]|(0->π/2)
=(√2/2)π +4 ( √2/2 -1 )
=(√2/2)π +2√2 -4
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-12-19 · 知道合伙人教育行家
关注
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |