这个方程组如何解?
1个回答
展开全部
1-x^2=y……①
1-y^2=z……②
1-z^2=x……③
由①得:y=1-x^2<=1,同理,x<=1,z<=1
y^2<=1,代入②,得:z=1-y^2>=0,同理,x>=0,y>=0
即0<=x,y,z<=1
①-②,得:y^2-x^2=y-z,(y+x)(y-x)=y-z……④
②-③,得:z^2-y^2=z-x,(z+y)(z-y)=z-x……⑤
③-①,得:x^2-z^2=x-y,(x+z)(x-z)=x-y……⑥
④*⑤*⑥,得:(y+x)(z+y)(x+z)(y-x)(z-y)(x-z)=(y-z)(z-x)(x-y)
(y-z)(z-x)(x-y)[(y+x)(z+y)(x+z)+1]=0
(1)当y=z时
则1-y^2=y,y=(√5-1)/2或-(√5+1)/2(舍去)
z=y=(√5-1)/2,x=1-z^2=(√5-1)/2
即x=y=z=(√5-1)/2
同理,当z=x或x=y时,x=y=z=(√5-1)/2
(2)当x≠y且y≠z且z≠x时
(y+x)(z+y)(x+z)=-1
因为0<=x,y,z<=1,所以(y+x)(z+y)(x+z)>=0,矛盾
综上所述,x=y=z=(√5-1)/2
1-y^2=z……②
1-z^2=x……③
由①得:y=1-x^2<=1,同理,x<=1,z<=1
y^2<=1,代入②,得:z=1-y^2>=0,同理,x>=0,y>=0
即0<=x,y,z<=1
①-②,得:y^2-x^2=y-z,(y+x)(y-x)=y-z……④
②-③,得:z^2-y^2=z-x,(z+y)(z-y)=z-x……⑤
③-①,得:x^2-z^2=x-y,(x+z)(x-z)=x-y……⑥
④*⑤*⑥,得:(y+x)(z+y)(x+z)(y-x)(z-y)(x-z)=(y-z)(z-x)(x-y)
(y-z)(z-x)(x-y)[(y+x)(z+y)(x+z)+1]=0
(1)当y=z时
则1-y^2=y,y=(√5-1)/2或-(√5+1)/2(舍去)
z=y=(√5-1)/2,x=1-z^2=(√5-1)/2
即x=y=z=(√5-1)/2
同理,当z=x或x=y时,x=y=z=(√5-1)/2
(2)当x≠y且y≠z且z≠x时
(y+x)(z+y)(x+z)=-1
因为0<=x,y,z<=1,所以(y+x)(z+y)(x+z)>=0,矛盾
综上所述,x=y=z=(√5-1)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询