高等数学,涉及罗尔中值定理的证明题
2个回答
展开全部
罗尔中值定理是:如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f'(ξ)=0。
因此,需要根据证明的结论构造出满足条件的函数
令 g'(x)=f'(x)f(1-x)-f(x)f'(1-x),两边积分可以得到
g(x)=f(x)f(1-x),这就是我们需要的函数
g(0)=f(0)f(1)=g(1)
g(x)显然满足[0,1]连续,(0,1)可导
因此,需要根据证明的结论构造出满足条件的函数
令 g'(x)=f'(x)f(1-x)-f(x)f'(1-x),两边积分可以得到
g(x)=f(x)f(1-x),这就是我们需要的函数
g(0)=f(0)f(1)=g(1)
g(x)显然满足[0,1]连续,(0,1)可导
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询